
Adamnite: A Dependable and Efficient Distributed
Ledger Technology Development Platform

Archie Chaudhury
Founder, Adamnite and Co-Founder, Adamnite Labs

archchaudhury@adamnite.org

Abstract—Programmable Distributed Ledger Technologies have
shown their potential with the recent growth of decentralized
applications being governed by smart contracts. Platforms such
as Ethereum, Solana, Cardano and more have established a
standard model for permissionless computer systems operating in
a decentralized manner. We formally define this paradigm as any
programmable operating system with decentralized applications
governed by immutable multi-party smart contracts recorded on
a distributed ledger.

Adamnite is an implementation of the aforementioned paradigm
with features built specifically for ease of use and security.
Additionally, it provides a framework for effective decentralized
application development, allowing for the creation of complex
multiparty smart contracts that are simultaneously powerful and
safe. In this work, we produce a low-level discussion of Adamnite’s
design, its current implementation, and its long-term goals.

I. INTRODUCTION

Distributed Ledger Technologies are increasingly being
viewed as a suitable platform for conducting financial trans-
actions, issuing contractual rights, and developing applications.
The latter has especially grown in popularity, with decentralized
state-transition machines such as Ethereum essentially serving
as global computers on which users can interact with inter-
connected and decentralized internet-based applications. While
initially only used to provide and record financial instruments,
these platforms have evolved to allow developers to create
complex smart contracts that have come together to form the
backbone of an ubiquitous decentralized application ecosystem.
Use-cases such as Non Fungible Tokens, tokenized governance
systems, and ledger-based loan mechanisms have metamor-
phized the manner in which users interact and share information
with each other.

Adamnite is a protocol that aims to provide developers with
a suitable and efficient platform for building such decentralized
software. Like Ethereum and other multi-party smart contract
development platforms, it can be modeled as a decentralized
state-transition machine. However, Adamnite surpasses this
common archetype through by making available both an in-
tuitive modular programming language and efficient distributed
ledger to developers, among other features, that allows to them
to pursue use-cases and applications for the smart contracts
paradigm that currently remain unexplored.

A. Reasoning

The main directive of the Adamnite protocol is to increase the
usability of decentralized internet-based software applications

by the general public, and thus encourage the adoption of
distributed technology as whole. Current implementations of
such applications are not only cumbersome to use, but more
importantly, lack fundamental security features. Exploits on
multi-party smart contracts are quite common, and due to
both the legal ambiguity surrounding the space and the natural
anonymity of the parties interacting with such contracts, are
often difficult to rectify. This leads to a significant lack of
trust of in distributed ledger applications by the general public,
government legislature, and private businesses. Furthermore, the
difficulty of architecting secure applications also significantly
alienates otherwise capable developers, and acting as a signifi-
cant roadblock in the development of decentralized applications.
Through the creation of a modular and intuitive programming
environment, Adamnite can serve to increase the adoption of
decentralized technology.

Adamnite’s proposed ecosystem will be at once similar and
broadly different than other multi-party smart contract systems.
While the Adamnite protocol fits the paradigm of an immutable
distributed ledger supported by a state machine, its actual
machine-level implementation is much more similar to that of
a high-level general purpose programming language such as
Python or Java. By doing so, we hope to bridge the current
gap between traditional development and distributed ledger
innovation , and encourage developers from the former to build
applications on the latter. Finally, Adamnite hopes to increase
the amount of native, decentralized, and usable applications on
the internet.

B. Prior Work

Adamnite was initially defined formally in a white-paper (1)
published in late 2021, which is where the core principle of a
straightforward and secure programming environment combined
with a traditional cryptographic distributed ledger was first
espoused.

The first distributed ledger that could simultaneously process
financial transactions secured by cryptography and be Byzantine
Fault Tolerant was proposed by the anonymous developer
Satoshi Nakamoto (2) in late 2008. Bitcoin was also the
first implementation of the decentralized consensus mechanism
commonly known as Nakamoto Consensus, which combines
both hash-based Proof of Work with the dominance of the
longest chain of timestamped blocks to serve as a computational
proof. This was the first public implementation of the class

of Distributed Ledger Technologies commonly known as a
blockchain. Bitcoin was preceded by Hashcash (3), among
others, and was followed by other currency-based systems such
as Litecoin.

Bitcoin was preceded by other peer to peer currency systems
such as B-Money, initially proposed by Dai. (4) While early
iterations of such currency systems were never officially taken
live, they were influential to the development of modern-
day cryptocurrencies. For example, an early version of both
distributed consensus and reputation-based punishment can be
seen Dai’s design for B-Money. These concepts will eventually
be used in both Nakamoto Consensus and the contemporary
slashing mechanisms seen in Proof of Stake (POS) currencies.

Buterin (5) proposed the first work that utilized an immutable
distributed ledger with a state machine combined with a Turing
Complete programming language in late 2013 for the Ethereum
project, while Wood (6) provided a low-level technical specifi-
cation of the same protocol in early 2014. Wood’s work, which
has been termed a ”Yellow Paper”, greatly influenced the layout
of this paper. Ethereum was also the first such system to have
a high-level script-like programming language (Solidity) that
was accessible to all, and set a standard for distributed state
systems and decentralized application development. A majority
of decentralized applications today are built using Solidity, and
are either defined on Ethereum or a distributed ledger dependent
on Ethereum. Ethereum’s virtual machine design has also
become a standard, with many alternative protocols pursuing or
leveraging compatibility with it to increase developer adoption.

Ethereum was followed by other multiparty smart contract
platforms incorporated with distributed ledgers: most notably,
Solana, Algorand, Cosmos, and others each proposed new
protocols with unique advantages. For example, Solana, initially
described by Yakovenko (7), proposes a distributed ledger and
global state machine utilizing a universal timestamps to create
a unique and performant consensus mechanism. On the other
hand, Algorand, invented by Micalli (8), proposes an alternative
consensus mechanism relying on cryptographic randomness to
generate a secure and stable distributed ledger. This allows
Algorand to be performant while retaining a significant amount
of decentralization, and decreases the likelihood of a Distributed
Denial of Service attack rendering the blockchain offline.

A common high-level smart contract scripting language was
first extensively described by Szabo (9), who saw it as an
algorithmic representation of a legally valid contract between
two parties. These smart contracts were defined in a formal
”mini” high-level language, and could be applied to financial,
medical, and legal agreements. Simplicity was also key: con-
tracts are meant to be readable by individuals coming from
backgrounds such as law and medicine. Adamnite is meant to
be a general distributed ledger and state platform which can
process operations specified in such a high-level and universal
contractual language.

II. THE DISTRIBUTED LEDGER

Fundamentally, Adamnite is a distributed and decentralized
network: it depends on the active participation of multiple
geographically sparse parties to function as intended. To achieve
this, Adamnite implements a distributed ledger that stores
individual accounts, contracts, the current state, and other data.
This data is manipulated and read through transactions that
are continuously recorded on the distributed ledger. These
transactions are often value exchanged between two parties
who are either interacting directly or through a contract that
is stored on the ledger. Transactions are approved through a
decentralized consensus protocol, with each transaction being
recorded via a timestamp and combined into data structures
commonly known as a block. These blocks are then linked
together via a cryptographic reference that points to the previous
block. The consensus protocol can be assumed to be Byzantine
Fault Tolerant; that is, we can reasonably expect that the failure
of a single node or validator will not result in the failure of
the entire network. We now move to a formal discussion of
Adamnite’s Distributed Ledger.

A. The Blockchain

Like other generalized multi-party smart contract develop-
ment platforms, Adamnite can be defined as a state machine
that calculates a new ”canonical” state based upon the execu-
tion of some transactions applied to the previous state. This
canonical state can store any sort of decentralized information,
including but not limited to identities, on-chain assets, or rules
governing the operation of some decentralized entity. While
there are certain low level optimizations that have been made
to Adamnite’s underlying storage mechanism that make it more
efficient, the protocol can still be formally defined as a state-
transistion mechanism that operates through transactions:

σt+1 ≡ Υ(σt, t) (1)

This is essentially the same as Ethereum’s transaction-based
state transition model, where external transactions define
changes to the overall state of the distributed ledger. ω repre-
sents the future canonical state, and Υ represents the typical
state transition function. As with Ethereum, any amount of
computation and storage can be carried out, with the only
restriction being the economics of such an endeavor. In that
sense, the Adamnite network can be seen as an implementation
of a Turing Complete state machine.

Like other implementations of such systems, transactions
on Adamnite are collected into blocks, which are then put
together into a chain through secure cryptographic hashes. Thus,
Adamnite can be defined as a blockchain, a specific implemen-
tation of the broader class of Distributed Ledger Technologies
that aggregates blocks of data through cryptographic means.
Blocks themselves contain a header which stores cryptographic
references to the previous block, all the transactions in the
current block, and a reference to the current state of the
ledger. Note that the entire state or list of transactions is not
stored; rather, a compact cryptographic proof that points to a

storage mechanism such as a Merkle Tree is leveraged as the
reference. Blocks themselves are proposed (and validated) by
democratically elected witnesses who have an incentive to act in
the best interest of the overall ecosystem by means of an implicit
social contract: the ecosystem benefits from having dedicated
and honest nodes validating the distributed ledger, while the
elected nodes are rewarded with units of the underlying digital
currency as a reward for their work. Not only does this currency
carry with it some level of monetary value, it is also used as an
indicator of an individual participant’s voting power, thus giving
elected nodes who act honestly (and are thus rewarded) more
power in future elections. This process is an implementation
of the Delegated Proof of Stake consensus mechanism, and is
discussed in more detail later in section 3. The actual blocks
on Adamnite’s distributed ledger defined as follows:

σt+1 ≡ Π(σt, B) (2)
B ≡ (Ω(B − 1), t,∆, ..), (T0, T1, ..), (ω), ..) (3)

Here, Π simply represents a state- transition within the block
to account for the block reward, while B represents the block
itself, which includes a block header, a list of all the transactions
within the block, a list of the witnesses who had been elected
for the particular block, and other low-level data. The block
header contains Ω(B − 1), which represents the hash of the
previous block in the ledger (for now, we can consider Ω
to be a secure black-box hash function that is both one-way
and collision resistant), the timestamp at which the block was
proposed, the signature of block proposer, an identifier, and
other information related to both the storage of the individual
block and the state of the entire ledger. While this definition
is similar to that of Ethereum’s, slight nuances are made for
Adamnite’s unique needs.

B. Digital Currency

Like with other decentralized consensus-based protocols,
there is a need for an underlying currency that serves to
add economic functionality to the system, reward validators as
discussed earlier, and establish a method of exchange for the
usage of the underlying computing system to host contracts or
internet applications. Adamnite’s underlying digital currency is
called Nite, and is used as both an incentive to elected validators
and as an internal medium of exchange. Like Ethereum, and
its intrinsic currency Ether, Nite has several subdenominations
named after prominent contributors to cryptography, digital
assets, and more:

1) Micali: 1
2) Sunny: 1010

3) Vitalik: 1012

4) Nite: 1014

In Adamnite, Nite is more than just a digital currency for
processing payments. It is also a key for being able to participate
in consensus: any individual with a valid Adamnite account
will be able to use their Nite to vote for validators. Nite will
also be the gateway to the entire class of decentralized internet

based applications that exist on the Adamnite platform, with
users being able to use their Nite in various ways to interact
with these applications. In that sense, Nite can be thought of
as an implementation of a digital key that enables access to the
entirety of the Adamnite network.

III. DATA STRUCTURES AND PROTOCOL CONSENSUS

A blockchain or smart contract platform can be described
more generally as a decentralized database storing various active
and inactive data. In most blockchains, the underlying data
is comprised of accounts, transactions, autonomous programs,
and low level storage data. In order to both validate on-chain
data and ensure that the ledger is kept updated with correct
information without having to rely on a centralized mint or
authority, there needs to be a procedure that allows for certain
participants or parties within the network to both update and
validate the information that is computed on the ledger. In
most other implementations of currency-based blockchains, a
measure of some form of contribution or dedication to the
network is used to decide which node (we use the terms
participant, account, and node interchangeably throughout this
work; they all designate a player within the network that can
execute the protocol and interact with others) has the ability
to take such actions. Popular implementations such as Bitcoin
and Ethereum measure the amount of raw computing power
that a particular node has dedicated to solving a sufficiently hard
problem in order to decide which blocks are added to the ledger
in a process that is frequently termed Proof of Work (PoW),
while other platforms use a variation of the amount of the native
digital currency that an account has to decide how blocks are
added to the underlying ledger. Both processes involving adding
some degree of economic backing to the network, thus giving
it long-term validity. They also double as issuance, as accounts
are rewarded for their contribution through the native currency
of the platform.

In Adamnite, as previously discussed, a ring of delegates are
chosen by the broader network to both propose and approve
blocks of transactions. This process can be defined as a variation
of Delegated Proof of Stake (DPOS), a common consensus
mechanism originally invented by Larmier (10) in July of 2014.
Delegated Proof of Stake itself can be seen as a common
implementation of a democratic peer to peer network proto-
col, or a democratic-crypto system. As both block validation
and block proposal are, to a degree, concentrated, Adamnite
takes additional measures to protect the network from common
attacks that plague other stake-based consensus systems. We
now describe both the core account structure and transaction
types.

A. Formal Description of Accounts and Account Storage

Account data itself is stored in a binary merkle tree for sim-
plicity, and should be stored as key-values within the trie itself.
The account state, formally defined as α, has the following
parameters:

nonce: A scalar representing the amount of transactions that
the account has sent. For autonomous accounts, these
include application-call transactions (transactions that
are made in the context of a message call to the
underlying code) Formally defined as αn

balance: An unsigned integer representing the balance, in
Micalli, owned by the account. Formally defined as
αb.

Rewards: The total amount, in Micalli, received by the
account from participating in the staking process.
Formally defined as as αr.

Data: The 512-bit hash of the underlying data stored by
the account; it is a mapping to the underlying binary
merkle trie that actually stores the data for the account.
Formally defined as αd

ADVM Code : A hash of the virtual machine code for the
account. The underlying code is executed in the event
of an application call to the account; in the case of a
manual account, this field is empty. Formally defined
as αc

It can be assumed that a standard serialization process allows
the account state data to be stored in the underlying binary
Merkle Trie, and that values can be retrieved by accessing the
key-value pairs.

B. Transactions

Transactions (t) are cryptographically signed messages that
relay information to the broader network. This information
could be financial, such as the transfer of x nite from one
non-autonomous account to another, or something else entirely,
such as an manual participation transaction indicating which
public addresses an account wants to represent them as dele-
gates. Transactions can be sent by both autonomous or non-
autonomous accounts; a non-autonomous account can send a
transaction for the purpose of procuring some good or service,
and an autonomous account can send another transaction for
change, paid back to the original non-autonomous account.
There are two main types of transactions: regular transactions,
and application transactions. Regular transactions are the pri-
mary form of transactions; the example given above is a type of
regular transaction. Application transactions are used to create
an autonomous account (a chain-based smart contract), and are
primarily sent by non-autonomous accounts (humans), although
there is no physical or computational limitation that prevents
one contract from creating another contract within its own
predefined logical or procedural framework. Transactions in
Adamnite have minimal fees due to the corresponding minimal
computational power required to validate them. This fee is
measured in ate, which simply another denomination of the
nite subdenomination micalli. We define 1 ate = 1 micalli ∗107
Regardless, all transactions have similar parameters:

type: The type of transaction: an application-creation
transaction or just a regular transaction. Formally
defined as Ty

from: The 160-bit public address of the sender of the
transaction; can belong to any type of account. For-
mally defined as Tt.

amount: The total amount, in Micalli, to be transferred in the
transaction from the sender to the receiver. Formally
defined as Ta.

timestamp:An UNIX timestamp specifying the time at which the
transaction was sent.

message: The message is simply any data, encoded as a gen-
eral byte array, that accompanies the transaction. This
can be underlying operational code, or storage data
pointing to the recipients underlying data. Formally
defined as Tm.

fee: The value, in ate, that the sender of transaction is
filling to pay for the transaction. Most client-side im-
plementations and on-chain wallets will automatically
calculate this value based on the computational size
of the transaction. Formally defined as Tf .

r, s: r and s are cryptographic values derived from the
Elliptic Curve used to sign transactions. This is dis-
cussed in more detail in subsection D of this section.
Formally defined as T0 and T1.

To sign transactions, a combination of the SHA-512 Hash
(from the SHA-3 Family) and the Secp256k1 curve order (from
the broader category of elliptic curves) is used to generate a se-
cure and recoverable signature derived from the sender’s private
key. This implementation is similar to the process described by
Wood in Appendix F of Ethereum’s Yellow Paper, and thus
draws heavily from the general implementation described by
Gura. (11)

We assume that the sender has a valid secret key Ps, which is
a randomly selected unsigned integer from a source of relative
entropy in the range of [1, Secp256k1n − 1] of size 32. The
derivation and recovery curve functions are essentially the same
as Ethereum’s: the ECDSA Functions ECDSASIGN (SIGN)
and ECDSARECOVER (RECOVER) are used to sign transac-
tions and recover the public key associated with the signature,
respectively. To generate the public key Pp, a combination of
the hashing functions SHA-512 and RIPMED-160 are used,
defined formally as Ha and Hb respectively, along with the
function ECDSAPUBKEY (PUBLIC). It can be assumed that
all intermediate values are 32-byte unless specified otherwise.
A formal description follows:

PUBLIC(ps) ≡ pp ∈ B64 (4)
SIGN(e, ps) ≡ (v ∈ B1, r, s) (5)

RECOVER(e, v, r, s) ≡ pp ∈ B64 (6)

Here, pa, the public address, is derived by hashing the value
pp twice, first by SHA-512 and then by RIPEMD-160. This
address is then encoded by a common encoding protocol such
as BECH-32 to generate the public address that is seen in one’s
wallet or account.

The information that is actually mapped by the SIGN Func-
tion (e) is simply a hash of the transaction values, excluding the

ECDSA signature values r and s. These values are truncated
(the first half is used), and then hashed with the hash function
ha:

A(pr) = B0..256

(
ha
(
PUBLIC(ps)

))
(7)

C. Blocks

Blocks in Adamnite are simply a collection of all the
transactions within a particular framework, along with relevant
information relating to consensus. A block is comprised of the
block header U , which contains identifying information about
the block itself, the transaction list T , which contains relevant
information of all the transactions that in the block, and a
witness list W , which contains information about the pool of
witnesses chosen to act as validators for this particular block.
The block header U contains:

Previous Hash: The SHA-512 hash of the previous block
in the timestamp chain. Formally, Up.

Timestamp: An unsigned scalar value that equals the
UNIX time of this block’s creation. Formally, Ut.

Witness: The public bit-address of the validator who pro-
posed the block, defined as Uw. This address is also
the recipient of all the transaction fees associated with
the block.

Net Fee: : An unsigned integer representing the total sum of
the fees for all the transactions included in the block,
formally defined as Uf .

Storage Size: An unsigned integer representing the total
bytes of storage and data in the block, formally defined
as Us.

Nonce: An unsigned integer representing the total amount
of valid blocks that came before this block, starting
from block 0. For example, a block with a nonce value
of 5 will have 4 blocks: 0, 1, 2, 3, and 4, before it.
Formally defined as Un.

Signature: A cryptographic signature created through a
common ring signature scheme that serves as a proof
that the block was approved by the witnesses selected
to serve as the validators for the block. Formally
defined as Ui.

Transaction Root: The SHA-512 Hash of the root of the trie
structure containing all the transactions for this block.
Formally defined as Ur.

State Root: The SHA-512 Hash of the root of the trie
structure containing the state after all transitions and
transaction changes have been applied. Formally de-
fined as Um.

The block header U is combined with the transaction list T
and the witness list W to generate a valid block. We can thus
define a valid block by referring to the following tuple:

B = (Bu, Bt, Bw) (8)

A block’s validity is inherently dependent on the values
contained within it, and standard logic. The state as dictated
through the underlying transactions must be consistent; for

example, a party P should not be double spending the same
unit of currency twice. Essentially, transitions to the base state
made throughout the serial execution of each transactions in the
block must be consistent within the rules of the protocol. As
described in equation 1, the underlying state is defined as σ, and
transitions to σ are defined through the transactions contained
in blocks. Throughout a block’s execution, the changes made to
the state as a result of each transaction must also be consistent
with another. Rather than specifying a serialization function,
we assume the existence of a black-box function SERIAL that
serializes objects, including blocks and transactions, native to
Adamnite’s protocol to a common byte format that can be
understood by computers interacting with each other in the
context of the Adamnite Protocol. SERIAL thus represents
a common function whose output can be understood by all
participants interacting with the Adamnite Protocol. Thus, we
define the preparation functions for both the block header U
and the block B in the context of SERIAL:

LH = SERIAL((Bp, Bt, Bw, Bf , Bs, Bn, Bi, Bm, Bo)) (9)
LB = SERIAL(Bu, Bt, Bw) (10)

Thus, SERIAL can be considered to be the canonical method
of translating block information (headers, transaction lists, and
witness lists) into a consistent byte format that should be
understood by different computer clients within the protocol,
and provides a method for translating block and transaction
information to a byte format that can be easily transferred via
a P2P protocol.

D. Transaction Fees

As with Ethereum, transaction fees on Adamnite are used as
a deterrent to network abuse, specifically when one party inter-
acting with the protocol takes advantages of its decentralized
nature to continuously execute computational operations. These
fees have their own dedicated/ subunit: ate. Any operation on
the Adamnite network, from sending transactions to creating a
new on-chain contact, is associated with a specific and universal
fee paid in ATE as soon as the operation executes.
Certain computational structures (such as a smart contract that
continuously executes the SHA-256 hash function to crypto-
graphically secure some arbitrary data) will be more expensive
than others (a simple transaction sending k Nite to another
account). As with other smart contract platforms, fees are
ultimately a submarket of their own: participants can specify the
fee they want to pay for the execution of their transaction, but
a lower than average fee may result in their transaction taking
longer to execute than similar transactions that have specified a
higher fee. It is worth noting that due to Adamnite’s consensus
model allows for fees to be significantly lower than legacy Proof
of Work systems such as Bitcoin.
Another difference in Adamnite’s fee model is the inclusion of a
minimum fee for average transaction:s tf This fee is meant to
represent the normative fee that guarantees a transaction will
be accepted by the network, assuming average congestions.

A sender can increase this transaction fee for a time inten-
sive transaction, such as a transaction that is time-intensive
(an example will be a transaction containing the solution to
some computational problem with x difficulty sent to a smart
contract that automatically rewards the first sender that sends
a transaction with the solution). However, for normal on-chain
transactions, the average fee should guarantee acceptance within
a reasonable time.

E. DPOS Consensus Mechanism

Adamnite’s consensus mechanism follows a typical DPOS
scheme, as discussed earlier. From that perspective, the
Adamnite network can be described as a specification of a
cryptographic peer to peer participatory democracy, where
one’s ownership stake in the network directly determines their
ability to influence who the validators for the next round of
blocks will be. The election process is used to add validity to
the blockchain itself: it represents that the current canonical
chain was created by and approved by nodes chosen by the
broader network. There is also an incentive for nodes to
be chosen as validators: block proposers are rewarded for
proposing blocks, which acts as both an incentive for current
validators to act honestly for the benefit for the network and
for regular nodes to attempt to become validators in the future.
Both block proposal and block validation is ultimately in
the hands of these democratically elected validators, making
Adamnite potentially more efficient than Proof of Work and
most Proof of Stake alternatives.

Adamnite’s DPOS scheme is actually used to elect two sets of
validators, which we define as ”chambers”, in a parallel fashion.
These chambers validate and reach consensus on different
aspects of the distributed ledger. Chamber A is a set of val-
idators tasked with executing the consensus and state transition
protocol: they handle simple payment transactions that do not
manipulate or take into account any code or storage tries and
make overall changes to the state as necessary. Chamber B han-
dles the execution of application-operations, such as the creation
of a new autonomous account or a message-execution. Chamber
B, upon completing a block of application operations, produces
a state-transition batch that is then executed by Chamber A on
the current state. Both chambers are elected through the same
consensus mechanism in a parallel fashion. We focus on how
A and B are elected and how consensus is reached in A in the
remainder of this section. More information on the storage of
contract code and data, its execution, and the general manner
in which the various nodes elected to B validate application-
related transactions cna be found in section IV.

It is extremely important that the DPOS process is secure and
ensures that the compromise or malicious behavior of a single
validator does not result in the failure of the entire network.
Furthermore, the Adamnite network should prioritize decen-
tralization, with any individual that has the minimal hardware
requirements to participate in the peer to peer network being
eligible to potentially become a validator.

One of the most attractive propositions of the DPOS sys-
tem, its democratic nature, is also the reason for its largest
drawbacks. A decentralized system relying on a DPOS con-
sensus mechanism suffers from the same diseases as physical
governments relying on Democratic elections: corruption and
bribery. Just as malicious politicians gain an unfair advantage
by corrupting the entities that handle elections and holding
power over individuals with significant wealth, malicious nodes
bribe would be voters and form cartels that allow them to
fully control the consensus process. This could result in the
approval of incorrect blocks that provide an unfair benefit to
the current validators, or certain transactions being excluded
entirely to either again provide a benefit to the current validators
or harm accounts that belong to individuals that the validators
consider to be an enemy. Centralization also becomes an issue;
a situation in which consensus is ultimately controlled by a
small group of individuals who own a significant portion of the
network (regardless of whether they are malicious or not) to
form an infallible group that constantly retains control of the
consensus process. Not only is this ultimately a semi-centralized
system (one’s chances of becoming a validator is innately tied to
their economic power, although to a degree less than traditional
staking systems). Thus, it is important for any system that
uses DPOS to take precautions to ensure that it continues to
enjoy the efficiencies associated with traditional DPOS while
not suffering from the same pitfalls.

While a significant part of a potential solution is simply
concentrated in the underlying tokenomics (the distribution
and allocation of the native token of the platform) and is
thus out of the scope of this paper, we propose a technical
solution within the consensus process itself. Consensus in
Adamnite is actually a variation of traditional DPOS, using
randomness and a reputation-based staking algorithm to protect
against centralization and malicious validators respectively.
This variation of DPOS is described in detail below.

We define a voting process V . V is simply a period of time
in which snapshots of all accounts that are eligible to be witness
is taken. To vote for a witness, an account only needs to have at
least one micalli to participate in this process, needing only to
possess a wallet that is directly interacting with the underlying
peer to peer network to be able to convey their decision to the
other nodes. We also define K, a black-box verifiable random
function (VRF) that takes as its input a group of participants and
an unlimited amount of tuples containing various variables and
their weights. The specification of K is not important; any VRF
that can be used to select n out of m, where n is a constant and
m is variable, and that can take in multiple variables as weights,
can be used. At the end of the voting process, validators are
selected through an iterative random process that is weighed by
several different variables.

G = V ((x0,m0), (x1,m1), (x2,m2)...(xn,mn)) (11)
A = Q(G) (12)

B = K(A, (m0,m1,m2, ...mn), (w0, w1, w2, ...wn)) (13)
C = K(A−B, (m0,m1,m2,mn), (w0, w1, w2, ...wn)) (14)

(15)

G is a tuple containing tuples that describe the public key
and votes allocated to each candidate at the conclusion of
the voting process. Again, V transforms the public keys and
votes received for each candidate into a ”tuple of tuples”, G,
that stores this information in an efficient manner. A is the
first voting pool, and is simply the top Q percentile of G
as determined by the amount of votes that were allocated to
each candidate. Finally, B is the pool of validators selected
for chamber X , the transaction and state tier, for the current
round. The size of B should be a constant number, and should
be able changed only through an on-chain fork. K is the
verifiable random function that selects the candidates, weighed
by the amount of votes they received and their reputation,
an algorithmic representation of a node’s behavior when they
have previously served as validators. Actions that can impact a
validator’s reputation include inactivity or proposing an invalid
block. C is the pool of validators chosen for chamber Y , simply
be executing the VRF K again on the complement of B in A.

F. Fork Choice and Byzantine Fault Tolerance

Because both block proposal and block validation are
restricted to a few democratically-elected and trustworthy
individuals during consensus, Adamnite does not need as
rigorous of a finality or security guarantee as alternative
protocols that utilize Proof of Stake consensus. However,
we do define several protocol-level parameters that provide
some degree of certainty surrounding forks, finality, and
misbehavior or collusion from the pool of elected validators.
We propose that as long as a supermajority (2/3) of the total
number of votes (coins) are allocated to honest validators
during any given round, the proposed blocks will be both
legitimate and reach finality. Furthermore, even if a significant
portion of coins are allocated to malicious parties, Adamnite’s
usage of reputation and other factors as weights during the
selection of validators for consensus should provide stronger
guarantees of security than traditional BFT style protocols
that only rely on the allocation of coins throughout the network.

We provide a short description of how the chosen validators
q for a round r (where r contains c blocks) propose, certify,
and reach consensus on blocks. At the beginning of each
block proposal phase p (p is a factor of c), q merges all of
their views of the current state into one, reaching agreement
about the last valid block for the canonical chain that they are
building on. The process that the q reaches to reach agreement
about the current chain is similar to the Goldfish Algorithm,
proposed by D’Amato, Neu, and others. At the beginning of a

round, validators reach agreement on the current state of the
chain by directly referencing the participation transactions that
occurred during the first phase of the consensus process. Each
participation transaction contains a reference to the last block
that a particular node considered valid. Validators construct
their view based on the weight of votes ascribed to each
particular block (and henceforth, a particular fork): the block
and corresponding chain with the most votes, as measured by
the total amount of coins allocated by all voters in participation
transactions referencing that particular block, is selected as the
canonical chain on which blocks for that particular round are
created. Once the validators reach agreement on the chain, they
sign a certificate that signifies their agreement and references
the chain being built upon. Because validators only use the
most recent allocation of votes, and thus discount any previous
weight assignments, a key component of Goldfish (specifically
vote expiry) is utilized. Reaching agreement helps ensure that
synchronous honest validators are aware in the chance that a
malicious block producer creates a secret chain and tries to
ascribe votes to it.

Once a block has been proposed by the block producer,
validators check to ensure that it is valid, and more specifically,
check to ensure that the block producer is not proposing blocks
on a separate fork from the agreed upon core chain. If a
proposer is found to be proposing nonsense blocks, is inactive
(either maliciously or accidentally), or maliciously proposing
blocks on the wrong chain, then a validator in the q can report
them with the corresponding proof of their misbehavior. If the
report is successful (based on the underlying cryptographic
proof), then the block proposer is replaced with a validator
from q, and a VRF is executed on the predefined pool to select
a new validator to replace the block proposer in q. The block
producer will also lose a significant portion of their reputation,
which is described in the next section.

G. RepuStake

The specific reputation-based algorithm used by Adamnite
is called RepuStake, first defined by the author of this
work in late 2021 (13). It provides a basis for using
reputation as a weight when selecting validators in a
DPOS consensus system, and defines algorithmically how
a reputation score may be calculated for an elected node.
This algorithm is slightly modified for Adamnite as it focuses
only on validators/witnesses, not regular nodes. Reputation-
based staking systems were also discovered previously and
independently by Hu (14), among others. A brief description
of this algorithm follows:
There exists a tree L which stores the account information
(balance, public address, nonce, etc) for all the accounts in the
network. Among this information, a boolean value ”Validator”
exists. This value is true if the account has previously served as
a validator, and false otherwise. If the account has previously
served as a validator, an additional parameter, reputation (R),
is added to L. Reputation is a score between 0-1 assigned to

the account, and is mutable whenever an account is selected
to be a validator for a particular round. Proposing a correct
block, for example, may increase a validator’s reputation score
by 0.1, while signing or proposing an invalid block decreases
their score by 0.5, and being inactive decreases their score by
0.1. The specific amounts are not important; a valid RepuStake
implementation must only have a large requirement to become
trustworthy, and severely penalize behavior by untrustworthy
nodes.

This algorithm is still under development, and will likely
change over time as the Adamnite Protocol continues to become
more formalized. Furthermore, reputation can also be used in
contexts beyond the core Adamnite implementation, such as
in clients or wallets that allow users to passively participate in
consensus (and thus earn staking rewards) by simply dedicating
their stake to candidates with high reputation scores. One
potential integration of RepuStake within Adamnite’s consensus
mechanism is by using it as a weight within the VRF used to
select validators. This can be a numerical measure, such as
the percentage of blocks that the validator has proposed in its
history. An integration such as this will allow for reputation
to play a role without having to turn to off-chain storage or
contract-based calculations.

H. Block Execution

The execution of a block, or the process by which a block
is proposed and approved by the network, is perhaps the most
critical part of the consensus protocol. Note that is only refers
to the actual blockchain, and not to the off-chain database
containing smart contract code and storage. State transitions
(transactions and changes dependent on smart contract calls)
are handled in a different fashion, and pushed to the main chain
in batches. The specifcs of this are covered in later sections.
The DPOS consensus mechanism ultimately serves to dictate
an efficient and secure process through which a canonical chain
(the one approved continuously by all elected validators since
the first, or genesis, block) can be defined. This process is
actually quite simple, and is described below in conjunction
with a function DPOS, which describes the process through
which a block is proposed and added to the canonical chain:

m = K1(B) ∧ n ≥ 2

3
with (m,n) = DPOS(Hb, Hx, d)

(16)
Here, K1 is a VRF that is capable of simply picking one

item from a list. K1 can be completely identical to K, or can
come from a different family of VRFs entirely. K1 is used to
randomly pick a block proposer for the next i blocks, where i
is again some constant that can only be changed through a fork,
and when multiplied by the total size of B, results in blank,
the number of blocks in a round.// It can be assumed that each
elected witness is given a witness specific public-private key
pair used to approve newly proposed blocks, or if they are a
proposer, signal that they are the ones who proposed the block.
This private key can only be used in the context of the round,

and once a new group of validators is elected, a new set of
validator private keys is issued, rendering the ones used in the
previous round unusable. For the purpose of block proposal, we
leverage a generalized ring signature algorithm (as described
by Rivest, Shamir, and Tauman (12)) Hx that allows the block
proposer m to propose the block with their signature without
having to expose their identity. Block validators can confirm
that the block proposer was indeed among the current group of
chosen validators, but will be unable to discern the exact identity
of the block proposer. This applies to both the witnesses elected
for the current round, and external nodes who are validating on-
chain information through the peer to peer network. This serves
two purposes: validators are encouraged to validate blocks based
on their correctness rather than the identity of the individual
who proposed the block, thus further combatting corruption
and discouraging the development of cartels within the broader
network of potential validators, and ensuring that malicious
attackers are unable to determine the identity of the proposer m
for the current sub-round i, thus protecting the network against
DDOS attacks that target a specific validator. The specifics of
this protocol are as follows: The block proposer for the current
round creates a block containing transactions, state transitions
as a result of contract calls, and other changes to the core
blockchain. The block proposer then uses a ring signature to
sign the block, signifying that they are a part of the current
group of validators, but not revealing their true identity.

Once a block has been proposed, validators take turns
appending their signatures to the block to signal their approval.
n is simply the ratio of approvals to the total number of
validators, and must be at least 2/3 in order for a block to be
appended to the current canonical chain. In the case where 2/3
of validators cannot come to agreement, a delay occurs. In the
event of an extended delay, an empty block is proposed, and
a new chamber of validators are selected from the predefined
pool using a VRF. Finally, d in the equation above is simply
the associated block data.

We also assume that there is a schedule in place for block
finality, the selection of block proposers, block validators, and
the composition of the general voting pool. We provide a
mathematical example below:

Rt = ∆ (17)
Bt = ∆+ 1/126(x) (18)
Ct = Bt + 1/252(x) (19)

Pt = 6(Ct) (20)
(21)

Here, Rt is the start of the round, x is the total amount
of time allocated to the round, Bt is the first time a block is
agreed upon and proposed to the network, Ct is a time period
in which the network can reject the transaction (resulting in an
empty block), and Pt is when a new block proposer is chosen.

IV. STORAGE AND EXECUTION

A. State Storage

The canonical state of the overall blockchain, formally
comprised of account addresses, balances, data, rewards, and
ADVM code, is the main data structure within the Adamnite
Ecosystem beyond the blockchain itself. As with Ethereum, the
state is stored in a database (full nodes will have to maintain
a copy of this database), data is maintained in a variation of
a traditional Merkle Trie, and addresses are mapped to the
other fields. We define the current state of the blockchain
as a mapping between addresses, balances, rewards, and
their contract code and data. In Adamnite, the state root is
conventional: it is simply the root of the Merkle Trie.

In Adamnite, a significant part of state storage, specifically
the storage of code (for contracts) and the storage of data, is
handled offchain. Contract code and data might be stored in
an offchain database, and be validated on-chain through an
one-way hash function. Thus, during a contract-based typical
state transition (such as one caused by interacting with a
smart contract or deploying a new smart contract), both the
off-chain database and the on-chain hash are updated. For
our implementation, the hashing function used is simply the
SHA − 512 hashing function. Furthermore, when multiple
application calls are made in a batch (perhaps by a user
interacting with a complex on-chain application), the validators
approving the transaction must also check the sender’s balance
and state to ensure that it has not changed since the beginning
of the batch.

Batch updates are pushed through optimistic pushes, thus
working in a similar fashion to a layer-2 protocol on an
alternative chain, although there are some slight differences:
the database’s sole purpose is to store contract information
and execute state transitions associated with contract calls.
Thus, the database’s storage and push protocols are much
less complex than a layer-2 such as Optimism. Batch updates
are constructed in the following manner: once a set of state
transitions for a batch is approved (this can be set to a
predefined number), the state generator (described in more
detail in the next section), upon confirming approval of the
proposed state changes within their quoroum, packages them
into a batch. A batch is essentially a list of state transitions,
along with their requirements: for example, transferring one
unit of a subcurrency from Bob’s account to Alice’s requires
that Bob has at least one unit of said subcurrency. Creating
new smart contracts or updating the code of an existing smart
contract will have no requirements except for checking to
ensure that the sender has enough NITE in their account to
pay the associated fees.

Upon finalizing the batch of state transitions, the state gener-
ator pushes it to the peer to peer network. Chamber A receives
this message, and the chosen block proposer proceeds to check

its validity before making a state update block, which is then
met with the same approval requirement (2/3) as regular blocks.
Upon approval, a state block is pushed to the change, resulting
in changes to account balances, storage hashes, and code hashes.
This execution is documented mathematically below:

Xb = ((a0 : ax0, ax1...axn), (a1 :), (an : ax0))Q1 = Υ(Q0, Xt) (22)

Here, Xb represents a batch, with each entry representing a
state transition and its associated requirements. Once the batch
is approved, a state transition from Q0 to Q1 is defined, with
Xt representing the state update block. It is worth noting that
state update blocks have a higher maximum size, as they are
designed for scalability. During a batch update, chamber A
will also check for potential malicious activity or inconsistent
logic as defined as by the requirements. This can be done by
checking to see if the proposed storage updates are consistent
with the logic in the underlying code and storage for each
smart contract call. For example, if applying a state transition
a requires some account to have a certain balance in NITE,
then chamber A will check to ensure that the account currently
has the required balance. This is to prevent a double-spend
attack in the context of smart contracts: although contract calls
are processed with little latency, there is the possibility that an
account may attempt to send regular transactions to execute a
double-spend attack in the hope that both their smart contract
call and regular transaction will get approved. Checking to
ensure that an account meets the requirements to actually
completely a transaction is key to mitigate against this sort of
attack.

Once an individual batch is uploaded to the core chain, the
witnesses in chamber A have until the next batch to produce
a fraud proof and challenge the batch due to suspicion of
malicious activity. We assume that batches are pushed at a
predefined schedule with respect to the core chain rounds:
for example, batches can be pushed every 4 blocks. Once a
fraud proof has been made, it is then executed to determine if
malicious activity took place. If the fraud proof is correct, the
batch is redone by chamber b, while the current state generator
loses reputation and is replaced.

The data structure used to map state data is defined as
a binary merkle trie. We propose a model similar to that
proposed by Buterin and Ballet in EIP-3102 for Ethereum. In
Adamnite, for each individual account, balance, rewards, code
hash, and data hash are all stored as key-value pairs in a binary
merkle trie. Using a binary Merkle Trie has specific advantages
over current implementations such as the Merkle Patricia Trie,
namely in terms of simplicity and saving overall disk size for
clients who want to maintain a full node. A current shift in
distributed ledger ecosystems, as noted in EIP-3102, is the
move toward stateless clients, or at least clients that do not
present as large of a computational requirement. Storing state
in a binary merkle trie goes toward this goal. The typical
state trie, because of Adamnite’s account-based structure,
will therefore contain a key-based reference to the account

fields discussed previously. We define this structure as TRIE;
for a singular account with address Aa, the structure is thus
TRIE(Ab, Ac, Ad, An), where Ab, Ac, Ad, An represent the
balance of the account, the hash of the account’s code, the
hash of the account’s data, and its nonce, respectively. Specific
implementation details can be found in Section B of the
appendix. In a future implementation, this may be transitioned
to a tree dependent on vector commitments (stylized as a
verkle trie).

B. Contract Calls and Execution

As discussed previously, Adamnite uses a second set of
validators that execute applications and message calls. This
was previously defined as chamber Y . Chamber Y executes
operations on the off-chain database storing data and code,
and provides a batch of state transitions to chamber x (which
executes base transactions and updates the actual state of the
public ledger) of all state-changes after executing a certain
amount of application transactions, which also includes the
creation of new applications and contracts. Note that both the
validators and the off-chain database have access to on-chain
state information (namely balance and nonce) to validate
messages/transactions. The set of validators in chamber Y
reach consensus on the state of the blockchain in a drastically
different fashion than their counterparts chamber X . While
the validators in X individually validate each individual
change to state, the validators in Y use a more efficient and
scalable process that is albeit more centralized. The validators
in Y adopt an algorithm similar to that used by Solana for
scalability: a single elected witness distributes packets of
information pertaining to state changes, and uses a Verifiable
Delay Function (VDF) to show that verifiable time has passed
between different application related events.

A specification of this process follows. At the beginning of
a round r in chamber y, a state generator (analogous to a POH
generator in Solana’s protocol) processes user messages and
smart contract calls on their local copy of the state. After each
state transition, the state generator generates a SHA − 512
hash of the byteform of the resulting state. The state generator
should then order the state transitions and their corresponding
results in a way that maximizes verification throughput. The
state generator then splits up the state transitions based on
their proximity to one another; if an individual state transition
overlaps with another (for example, if they are calling the
same contract or impact the same account), they are grouped
together. These groups, along with their corresponding proof
of history records, are split up by the state generator and sent
to the remaining witnesses in chamber Y . The proof of history
records show that a certain amount of time has passed between
each state transition, as determined by the amount of time it
takes to execute the hash function and calculate a new version
of the state.

Once the set of witnesses in chamber Y agree to each
individual state transition by appending a signature with
their participation key, the state generator assembles a batch
consisting of the groups of state transitions, the signatures, and
their stateproofs, and sends it over the peer to peer network to
chamber X , who then performs the check described previously.

Chamber Y can be thought of as a computational specific
execution layer; while witnesses representing chamber Y for
any given round r are elected at the same time as the witnesses
in chamber X , they play vastly different roles, with chamber
X representing the base execution layer which approves all
state changes. By splitting contract execution and storage,
we significantly reduce both execution and storage overhead:
smart contract calls can be processed at a faster rate without
compromising on security by allowing for spam or overflow
attacks, and individual nodes can choose to store just the core
state that consists of accounts and transactions, without the
offchain database. A witness that wants to run for chamber
Y will need to run a full node with access to the database in
order to be selected.

V. PROGRAMMING ENVIRONMENT

We now move to a formal discussion of Adamnite’s program-
ming environment and execution process. At its core, Adamnite
is a platform meant to allow for the efficient creation of
multiparty smart contracts that are executed and stored entirely
on a distributed ledger. The programming environment includes
all the components needed to achieve this principle: an easy to
use modular programming language, a semi-Turing complete
stack-based virtual state machine, and a smart contract creation
and message execution model. We leave the specification of
the contract creation and message execution up to the developer;
one can assume that it is essentially the same as other multiparty
smart contract development platforms such as Ethereum or
Solana. We now provide a formal definition of Adamnite’s
programming stack, A1, and a description of its virtual state
machine.

A. Programming Language and Execution

A1 is Adamnite’s high level programming language, and also
serves as the basis for its high-level programming environment.
A1 itself is an adoption of the functional programming
model employed by Haskell and other popular programming
languages used in third generation blockchains. However, in
practice, A1 is more of a generalized functional language:
the creation of functions and modules enables programmers
to package reusable code that can be used by others, thus
creating a programming ecosystem in which vetted modules
of code are leveraged for both security and ease of use.
Functional programming has been described in length by
Hughes (15), among others. A1’s structure and script are
heavily inspired by E, a generalized contract-programming
language that allowed developers to create smart contracts in

a secure distributed computing framework. A1 can be thought
of a modern implementation of a distributed message-oriented
programming language with an emphasis on readability. A1
is dynamically-typed; types do need to be explicitly declared,
and are only defined at runtime. A1’s syntax is also extremely
similar to that of Python’s, thus allowing any developer familiar
with writing programs in Python to easily use A1 to write
powerful smart contracts.

In A1, developers write programs through multiple contracts,
which themselves are defined by other contracts. This process
continues until the most basic scripts are reached: these
axiomatic scripts form the basis for which more complex
objects are designed and executed. A1 borrows heavily from
E, a smart contract language originally described by (16).
E allowed developers to write functional Turing-Complete
scripts in an object-message framework, and allowed those
contracts to function in a distributed manner in the presence
of mutually suspicious parties. For A1, this is extended to
create multiparty smart contracts that function entirely on
a distributed ledger, where all parties interacting with the
distributed ledger are considered to be adversarial. This is a
marked improvement over current implementations of current
multi-party smart contract programming systems, which often
leave much to be desired from both a security and functional
perspective. Even the slightest error results in an adversarial
party being able to access private information, or manipulate
the smart contract in a way that should not be allowed by
the average participant. Like with E, developers using A1 can
create contracts with promises, where the execution of all
the steps of a contract does not need to be immediate. Smart
contracts can thus represent more than just rules dictating
the transfer of subassets; they can be used to relay messages
between two mutually suspicious parties while ensuring that
neither one of them Furthermore, most modern smart contract
programming languages are almost impossible to use for the
average individual who interacts with contracts on a daily basis,
thus being a far cry from the contract languages originally
envisioned by Szabo. In A1, scripting is simplified. Programs
can be executed through an object-oriented framework through
the definition of different class sets, and contracts are able
to be inline into other contracts, allowing for an efficient
development platform that allows developers to utilize other
contracts to create their own contracts, much like how standard
forms are used in the legal industry.

A1 provides an easy-to-use script that is inherently readable,
supports the use of data feeds and external APIs, and is modular,
allowing for the use of packages and standards that can drive the
creation of complex contracts. This standard library in particular
will serve to make the development of contracts easier, and will
also protect developers from making rudimentary errors that can
compromise their contract.

B. Virtual Machine

The message execution model presents a framework through
which alterations to Adamnite’s canonical state are made in
the context of contract execution. Contract execution within
the Adamnite protocol means the serial execution of bytecode
instructions along with the processing of data external to the
contract itself (if needed). To accomplish this, we specify a
formal stack-based virtual machine: the Adamnite Virtual Ma-
chine (ADVM). The ADVM, like the EVM and other common
implementations of distributed virtual machines, is quasi Turing
Complete because of the practical bound on net computation
imposed by transaction fees.

1) Virtual Machine: The Adamnite Virtual Machine
(ADVM) is a state virtual machine and bytecode interpeter
based on the popular WebAssembly (WASM) paradigm.
Specifically, we leverage WASM’s modularity and
standardization to allow developers to easily create scalable
smart contracts, and for users to be able to efficiently interact
with the underlying smart contracts. WASM is also preferred
because of its native 32/64 bits support; one major pain point
in EVM-based execution models is the execution of arithmetic
and other basic operations in 256 bits, which is extremely
inefficient and contributes to the slow execution of many
EVM-based programs. The ADVM itself is a general extension
of WASM: it includes all the standard WASM operations, with
the addition of specific fee and execution based opcodes.
While we do not offer a specific implementation, either an
extension of an existing WASM engine or a new implementation
should accomplish this goal. Elliptic Curve and generalized
cryptographic libraries are implemented as generalized WASM
functions/modules within the WASM engine. A list of these
operations, along with a description of their functionality,
can be found in Section C of the appendix. The VM itself
is stored in a virtual ROM, and is distributed among all
the active nodes within the Adamnite network. The ADVM
also supports exceptional execution; examples include stack
overflows, incoherent instructions, or a simple lack of fees
from the executor of the message. As with the EVM, any
exception results in all state changes being voided, and the
error is reported to the message executor. Fees follow a
slightly different model than other blockchain-based virtual
machines: due to WASM’s predictability, we can actually
create a system in which fees are deterministic and stable. The
majority of WASM engine operations are consistent, and with
hashing functions and other common cryptographic operations
essentially being functional libraries, operations have consistent
fees (almost all operations cost 1 micalli).

2) Execution: The execution model itself determines an
output, a new canonical state, and an intermediate state based on
the computations executed upon the inputs. The other variables
provided by the execution agent are typical; we forgo explaining
these in a formal context for brevity. Rather, we define a

execution function Ξ that computes these outputs:

(σ′, t′, I ′,O) ≡ Ξ(σ, t, I, IN) (23)

Here, as in Ethereum’s execution function, computation
on the state, transaction fee, and intermediate state results
in a new output. The intermediate state I is essentially the
same as Ethereum’s substate. Individual operations, defined
as opcodes, are executed using this function until the entirety
of the message is computed, or an exception that results in
the execution halting is reached. The execution of a message
can only be halted through an exception if the caller lacks
the ATE needed to process the execution of all the operations
within the message, if the execution of the message results in
a stack overflow, or if the executor’s own state changes during
the execution of a complex batch of calls, as noted previously.
Individual operations, barring any other errors, can never result
in the machine halting.

Contracts, and their associated functions, are stored in a
hash table that itself is stored in a database. Every contract is
made up of various functions that define how it behaves and
interacts with both manual and autonomous accounts. These
sets of rules can be thought of as being analogous to clauses in
traditional agreements that govern interactions in the physical
world.

Just as physical agreements often cite or reuse parts of
other agreements to create a standard often referred to as a
boilerplate contract, smart contracts should be able to reuse
parts of other contracts as they are enforcing various interactions
between different parties. This is achieved in Adamnite through
the concept of reusable functions, referenced through hashes.
Imagine that a contract A, with a function set x0, x1, x2,xn

is deployed to the Adamnite state machine. Each of those
functions are referenced by a hash in a hash table that references
their storage location. When a contract B is deployed, the
virtual machine checks to see if any of the functions used by
B are computationally identical to A in some way. We define a
function x0 and a function y0 to be identical if they produce the
same outputs with the same inputs. For example, a function that
adds 8 to some number will be considered identical to a function
that adds 3 and then 5 to some number. For more complicated
cases, the virtual machine can use test-cases to determine if
two functions are identical. From the example above, when a
function from contract B is found to be identical to a function
from contract A, it is not stored, and instead, the function from
contract A is used. This drastically reduces bloat in the overall
chain, as the storage for every subsequent contract (assuming
all contracts use the same sort of templates).

3) Contract Creation and Calling: Within Adamnite’s
protocol, contracts are created through an application
transaction, similar to the framework employed by Algorand.
The creation of a contract is essentially the creation of an
autonomous account that dictates interactions between multiple
parties. We use the terms autonomous account and smart

contract interchangeably; they both define any account on
the Adamnite Blockchain that is controlled by underlying
code rather than a third-party. A simple exchange contract,
for example, could dictate the exchange of two assets: an
external party (represented by a manual account) will send
some amount of one asset to the autonomous account and the
autonomous account will automatically send an equal market
value of the other asset back. The current exchange rate for
the assets will be determined through the account’s underlying
ADVM code. If specified by the creator, this underlying code
can actually be changed by the creator and other trusted
parties, thus allowing for contracts to be updated. This does
mean that some contracts do require a certain degree of trust
in the creator; however, due to the readability of ADVM code,
an interested party will easily be able to determine whether a
contract has such a feature.

Another unique feature for contracts created on the ADVM
is their modularity (not to be confused with the functional
libraries provided by the A1 programming language). Contracts
can be split into subsections, which can then be individually
loaded by other contracts if needed. These subsections can also
be defined as standard WASM libraries (a set of precompiled
contracts may also work here). This is similar to how contracts
work in the legal industry; often, when one contract utilizes
language or terminology from another contract, it often only
leverages one specific section or case. We apply this to
programs acting on the distributed ledger that function as smart
contracts. When a smart contract on the Adamnite protocol
calls another smart contract, it can call and load specific
sections within that contract. This serves two purposes: first,
it serves to make execution more efficient by diverging from
the top-down execution model used by the EVM (originally
described by Pilmore in an article providing an overview of the
Pact smart contract programming language (17)), and second,
it protects contracts from external contract calls that might
be malicious, even if a subsection within it is useful. Module
calls are inlined during execution, thus foregoing the need to
execute the entirety of an external contract just to execute one
specific function.

VI. LOOKING AHEAD AND CONCLUSION

We now look ahead and provide potential directions for how
the Adamnite project could expand. It is worth noting that the
current work is a working paper, and will likely change as the
protocol evolves. In particular, the section on the programming
environment will likely evolve as A1 itself becomes more
formalized and further research concerning the implementation
of the ADVM done. Furthermore, an expansive appendix that
further formalizes the details included in this work will also be
included, and example programs and diagrams depicting how
A1 works will likely be included in a future release of this
work. However, despite the potential mutability of this work,
we maintain that the core principle of an efficient and easy to

use multiparty smart contract development platform will remain
the same throughout the development of both this work and the
Adamnite platform.

A. Scalability Plans

One of the core tenets of the Adamnite project is the idea
of a simplified distributed ledger platform; this definition goes
beyond just the programming environment used to create on-
chain applications and contracts. The process for individuals
to download nodes to validate the ledger should also be a
simple process, and be open to any individual with access
to the internet. Current blockchains are often too large, and
require specialized hardware for node validation. A solution
to this problem exists in the form of the succinct blockchain
established by Bonneau, Meckler, Rao, and Shapiro in their
technical paper describing the Mina Blockchain (18). Succinct
blockchains leverage zero knowledge proofs to minimize the
information needed to verify the blockchain; a node only needs
to validate the latest block in order to verify the entire chain.
Adamnite can leverage zero knowledge proofs either in its
core protocol or via a subchain to make validating on-chain
transactions more accessible to the average network participant.
This is key to Adamnite’s long-term goal of making blockchain
technology more accessible to the general public while main-
taining decentralization. Eventually, anyone poessesing a device
with the ability to access the internet should be able to verify
the entirety of the blockchain’s history.
One of Adamnite’s core features that was not discussed at
length was formal verification, which will be a fundamental part
of the A1 programming language. Formal verification allows
for contract developers to declare assertions and dynamically
check their code for common errors; an extension of this is
knowledge verification, which allows for developers to define
how various parties may interact with the contract. A common
example of such a concept is a loop invariant, which allows a
developer to declare via an assertion that a particular variable
will remain constant over time. Knowledge verification allows
for developers to make assertions that limit the actions that
a party may take; this may be useful for a game or lottery
system that is predicated on manual parties interacting with one
another, with the underlying smart contract acting as the server
and predefining the rules for the game. In such situations, it
is essential to ensure that different parties have different roles
and capabilities when interacting with the underlying contract.
An administrative role may be able to redefine or update the
contract, while others will only be restricted to a certain set of
moves. It is also important to emphasize that this verification
process only serves to mitigate errors contained in a contract’s
logic; it does not prevent human error (a developer losing his
private key to a well-engineered scam is an example). This will
be explained in more detail once A1 is more formalized.

B. Conclusion

We have formally defined Adamnite, an efficient distributed
ledger and easy to use multiparty smart contract development

platform. Adamnite allows developers, regardless of their prior
experience with blockchain technologies, to easily create au-
tonomous contracts and applications that are independent of
any centralized power and are entirely autonomous. Further,
changes to this work and the Adamnite protocol will be made
to accomplish the core goals of the Adamnite protocol.

VII. ACKNOWLEDGEMENTS

This work would not have been possible without the con-
tributions of my co-founders at Adamnite Labs: Thomas Pe-
tersen, Khalil Shanti, and Brent Gillett. Without them, the
Adamnite project itself would have likely died out ago. Spe-
cial thanks also goes to Adamnite’s open-source contributors,
namely Mayank Udani, Marin Peko, Jonah Wilsmeyer, and Ajai
Karthik. They have all, at one point or another, helped formulate
my theoretical ideas into actual software. Finally, a special shout
out to Tsimafei for helping me greatly with protocol research,
leading the development of the core blockchain, and of course
keeping the spirit of anonymous open-source contribution alive.
Finally, a general thanks to the broader blockchain Community
for suggesting ideas such as the adoption of WASM and off-
chain storage of code and data, which was suggested by Reid
Rankin.

REFERENCES

[1] A. Chaudhury, “Adamnite: A scalable and secure
blockchain development platform”, December 2021.

[2] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash
System”, 2008.

[3] A. Back, “Hashcash - A Denial of Service Counter-
Measure,”, August 2002.

[4] W. Dai, “BMoney,” 1998.
[5] V Buterin, “Ethereum: A Next-Generation Smart Contract

and Decentralized Application Platform”, 2013.
[6] G. Wood, “ETHEREUM: A SECURE DECEN-

TRALISED GENERALISED TRANSACTION
LEDGER”, 2014.

[7] A. Yakovenko, “Solana: A new architecture for a high
performance blockchain”, 2017.

[8] S. Micalli, J. Chen, “ALGORAND” 2017.
[9] N. Szabo, “A Formal Language for Analyzing Contracts”

2002.
[10] D. Larmier, “Delegated Proof-of-Stake (DPOS)” 2014.
[11] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C.

Shantz. Comparing elliptic curve cryptography and RSA
on 8-bit CPUs. In Cryptographic Hardware and Embedded
Systems-CHES 2004, pages 119–132. Springer, 2004.

[12] R. L. Rivest, A. Shamir, Y. Tauman, How to Leak a Secret
2001.

[13] A. Chaudhury, “RepuStake” 2021.
[14] Q. Hu, “An Improved Delegated Proof of Stake Consensus

Algorithm” 2021.
[15] J. Hughes, “Why Functional Programming Matters” 1990.
[16] M. Miller, “Towards a Unified Approach to Access Con-

trol and Concurrency Controls” 2006.

[17] E. Pilmore, “The EVM Is Fundamentally Unsafe” 2019.
[18] J. Bonneau, I. Meckle, V Rao E. Shapiro, “Mina: Decen-

tralized Cryptocurrency at Scale” 2020.

APPENDIX

A. Peer to Peer Network

Adamnite’s peer to peer network is heavily optimized
for Byzantine, Altruistic, and Rational (BAR) Resiliency.
Adamnite’s network utilizes a whitelist, w, a greylist, g, and a
blacklist b. Individual nodes also maintain a POM (Proof of
Misbehavior) score for each node they exchange information
within the protocol. This is not stored on-chain, or even within
the protocol. Rather, individual nodes maintain these records
in their own memory. We thus define the possible of set of all
nodes that a node a can interact with as the tuple (w, g, b),
and the reputation scores of these nodes as p. Note that this
reputation score is different from the on-chain reputation score
used to evaluate validators through the RepuStake protocol.
Nodes on the whitelist are nodes that a can interact with and
exchange information with freely, nodes on the greylist are
used as an alternative in case the whitelist is inactive. The
blacklist is a temporary ban list that each node maintains; a
node is demoted to the blacklist if it misbehaves (such as
spamming with incorrect information) and kept there for the
duration of a round of consensus.

Rational nodes, on the other hand, are incentivized to act
in line with the rules of the protocol to avoid demotion and
exclusion. It is in every node’s best interest to be connected
to other nodes and participate in fair exchanges of information.
Altruistic nodes are incentivized to perform optimistic pushes of
information for new nodes joining the protocol to not only stay
connected to as many nodes as possible, but to also provide a
social proof of their contributions to the protocol, and therefore
increase their chance of being elected as a validator in the
future.

B. Binary Merkle Trie

The binary merkle trie data structure, used to map key-value
references from account addresses to balance, code hash, and
storage hash, is an integral part of Adamnite. The Binary
Merkle Trie is organized in a node structure, with leaf nodes
containing specific values that map to given keypairs. In a
manner similar to EIP-3102, we define an example of how an
account’s various values may be accessed.

Every account on the Adamnite Blockchain can be rep-
resented by the following tuple: (Aa, Ab, Ac, Ad, An, which
represents the account’s address, balance, code hash, data hash,

and nonce, respectively. The merkle trie structure therefore
maps Aa to the other values in the following fashion:

Ab = HASH(Aa)[0...253] + +0b00 (24)
Ac = HASH(Aa)[0...253] + +0b01 (25)
Ad = HASH(Aa)[0...253] + +0b10 (26)
An = HASH(Aa)[0...253] + +0b11 (27)

(28)

This setup is very similar to that proposed in EIP-3102, and
provides a deterministic mapping between addresses and other
state values. The actual values for code and data are stored in
a separate database, presumably one that also has direct access
to the on-chain trie, and in some implementations, may even
store a copy, thereby also storing the entirety of the state.

The binary merkle trie structure is used to store the state
of individual state machines that track different aspects of the
distributed ledger. The core account state stores all the accounts,
along with the parameters described previously. A participant
tracker keeps track of all candidates and elected witnesses,
and a transaction tracker stores all finalized transactions. These
individual trackers are stored on-disk, and should be updated at
the conclusion of each respective finalized state transition.

C. Contract Storage

As discussed previously, contracts code and storage are
stored in an off-chain database that is separate from the core
state. This database is modelled as a distributed hash table,
with an individual entry storing the address of the contract,
its corresponding storage, and code. To improve efficiency,
contract code is stored in a modular fashion: an individual
contract storage slot only stores new functions, and references
previously defined functions in other contracts. For example,
a common addition function, that simply takes as input two
unsigned integers and returns their sum, will only be stored
once for any integers a and b. If the function is defined
again for a different contract, it will not be stored, and the
new contract will call the function from the original contract
whenever it needs to use it.

Database witnesses and candidates each maintain a copy
of the database; there also exists a canonical database that is
updated after each batch upload, and is available to download
for all new database witnesses if they wish to double check the
contents passed to them over the gossip protocol.

D. Virtual Machine Specification and Instruction Set

A majority of the ADVM’s numeric and operation instruction
is directly derived from WebAssembly (WASM). This allows
for computation that is native to most computers. WASM is
natively little-endian, and thus by extent, a majority of the
ADVM’s operations are also little-endian. Unique operations
(such as Elliptic Curve Cryptography or generalized crypto
functions) can be implemented as WASM modules. The

instruction set includes a MODULE opcode that specifies the
use of a specific WASM module (say the cryptography module
for using the SHA-256 hash). A set of WASM instructions
can be found here. The ADVM native word and stack size is
64 bit, although basic operations also have 32 bit counterparts
due to WASM’s standard; this makes Adamnite’s execution
environment extremely similar to most modern computers.

Fees for contract calls are determined using an opcode meter-
ing model, similar to other ledger-based execution environments
such as the Ethereum Virtual Machine and the Algorand Virtual
Machine. Thus, the cost of interacting with a smart contract is
the net sum of all the fees associated with executing all the
opcodes associated with the call. The ADVM’s execution model
is also bounded: smart contracts can only be a certain size (8 kb)
and have a maximum fee of 30000 ATE. However, due to the
ADVMs modular nature (hashing and signature algorithms are
implemented as WASM modules that developers can directly
reference), these restrictions should be easy to stay within for
the vast majority of multi-party smart contracts. The purpose
of these restrictions are two-fold: first, they set a barrier against
malicious users who wish to simply spam the network by
creating a smart contract that just sends nonsense transactions
back and forth, and second, they allow for Adamnite’s execution
to be relatively predictive with regard to both cost and time.
By setting an upper limit on fees and size, we can predict with
relative accuracy both the costs associated with a smart contract
call and the amount of time it will take to process.

Individual opcode fees for the ADVM are quite simple:
all native arithmetic (addition, subtraction, multiplication, divi-
sion), store, load, and stack operations cost 1 ATE. More com-
plex operations, such as square roots, truncations, ceiling/floor
functions, and comparisons, cost 2 ATE. Boolean operations,
block operations, and loops cost 4 ATE. Finally, the MODULE
opcode, which essentially loads different WASM modules for
the purpose of cryptographic hashing. An external module call
has a fixed cost of 500 ATE, as these modules are often
focused on expensive computations (hashing and elliptic curve
cryptography). This is just a generalized guideline; different
implementations of the protocol may contain different fee met-
rics. In general, the principle of keeping a minimal fee for the
majority of the operations should be followed. The ADVM also
implements specific blockchain related functionality through
specific opcodes. A list of these functions, along with a short
description, can be found below.

Adamnite Environment Opcodes
Address Name Short Description Proposed Fee (in

ATE)
0xC0 ADDRESS The Address of the contract 20
0xC1 BALANCE Balance of the contract. 20
0xC2 CALLER The account that called the con-

tract.
20

0xC3 DATASIZE The size of the data being passed. 20
0xC4 CODESIZE The size of the code being exe-

cuted.
20

0xC5 ATETOTAL The total amount of ATE allocated
to this call.

20

0xC6 COPYDATA Copy the current data input to
memory.

50

0xC7 COPYCODE Copy the current code input to
memory.

50

0xC8 GETCODE Return a copy of the current code
to read.

20

0xC9 VALUE Return the amount of ATE, if any,
in the message.

20

0XCA TIMESTAMP The current block’s timestamp. 20
0XCB CALLERBALANCE The balance of the caller. 20
0xD0 CALL Initiates a new message/smart con-

tract call into a specific contract
Variable, based on
operation and fee
limits.

0xD1 CREATE Creates a new smart contract 100 ATE
0xD2 IMPORT Imports specific functions from an

external contract
Variable, dependent
on type of functions
imported.

0xD3 CALLOUTPUT Call the contract based on the out-
put of another contract’s code

Variable for same
reasons described
above.

https://webassembly.github.io/spec/core/binary/instructions.html

	Introduction
	Reasoning
	Prior Work

	The Distributed Ledger
	The Blockchain
	Digital Currency

	Data Structures and Protocol Consensus
	Formal Description of Accounts and Account Storage
	Transactions
	Blocks
	Transaction Fees
	DPOS Consensus Mechanism
	Fork Choice and Byzantine Fault Tolerance
	RepuStake
	Block Execution

	Storage and Execution
	State Storage
	Contract Calls and Execution

	Programming Environment
	Programming Language and Execution
	Virtual Machine
	Virtual Machine
	Execution
	Contract Creation and Calling

	Looking Ahead and Conclusion
	Scalability Plans
	Conclusion

	Acknowledgements
	Appendix
	Peer to Peer Network
	Binary Merkle Trie
	Contract Storage
	Virtual Machine Specification and Instruction Set

