
Adamnite
An accessible, scalable, and secure blockchain development

platform.

Archie Chaudhury

archchaudhury@adamnite.org

2022

Abstract

Since the advent of Bitcoin in 2009, cryptocurrencies and other digital assets have reshaped
the store and transfer of financial value. Bitcoin was the first successful implementation
of a decentralized currency supported by a peer to peer network, relying on no centralized
authority or power to instill validity for the underlying asset. The creation Recently, digital
assets have gained immense attention due to their use-cases beyond just currency transfers,
with Non-Fungible-Tokens (NFTs) and other use-cases becoming strong markets in their
own right. Yet, despite the importance of digital assets, the invention of Bitcoin also
led to the creation of blockchain technology as a tool for data-storage, validation, and
consensus. Blockchain technology, along with its close counterpart Distributed Ledger
Technology (DLT), has reshaped the Internet; Decentralized Autonomous Organizations
(DAOs), InterPlanetary File Storage (IPFS), and Decentralized Applications (DApps) are
all part of the new Internet commonly referred to as “Web3”. Accordingly, Adamnite seeks
to produce a fully permissionless blockchain platform that will allow developers across the
world to confidently create Web3 applications. Utilizing a secure DPOS-based consensus
mechanism, leveraging an efficient execution model for on-chain programs, and coming with
an easy to use native high-level programming language, Adamnite will be more scalable and
accessible than a majority of current blockchain solutions, thus accelerating the adoption of
blockchain technology across both public and private sectors.

Table of contents

List of figures vii

1 Background 1
1.1 History . 1
1.2 Going beyond the tokenization of assets 2

1.2.1 Programming with Bitcoin Script 3
1.2.2 Programming with Ethereum . 4
1.2.3 Alternative Methods and Chains 6

2 Adamnite 9
2.1 Adamnite Transactions . 10
2.2 Consensus Mechanism . 11

2.2.1 Block Proposal and Agreement 12
2.2.2 Witness/Validator Selection . 13

3 Programming on Adamnite 15
3.1 A1 Programming Language . 15

3.1.1 Modularity and Scripting . 16
3.1.2 Verification for Security . 17

3.2 Storage and Execution . 17
3.2.1 Structure . 18
3.2.2 Contract Creation and Calls . 18

3.3 Potential Use Cases . 20
3.3.1 Asset Creation . 20
3.3.2 Decentralized Finance . 20
3.3.3 Decentralized Streaming . 21
3.3.4 DAOs . 21

vi Table of contents

4 Conclusion 23
4.1 Looking Ahead . 23
4.2 Miscellaneous . 24

4.2.1 Why DPOS? . 24
4.2.2 Governance . 25
4.2.3 Proof of History . 26
4.2.4 Currency . 27

4.3 Conclusion . 27

List of figures

1.1 Source: Bitcoin Wiki . 4
1.2 Solidity Code . 5

3.1 A1 Ballot Example . 16
3.2 A1 Token . 20

4.1 POH Table . 26

Chapter 1

Background

1.1 History

Distributed Ledger Technology (DLT), the larger group of software that encompasses
blockchain, has its roots in the early Roman Empire, which allowed its citizens to barter
across the entirety of the empire using a record-keeping system. Any asset database that is
shared across multiple nodes and does not rely on a central administrator can be defined as a
DLT. DLTs, despite their potential, were never adopted enmasse in modern software due to
the fear of malicious actors overtaking the system. This problem was summarized as “The
Byzantine Generals Problem” by Leslie Lamport, Robert Shostak, and Marshall Pease in
their 1982 paper of the same name. The paper describes an imaginary abstract situation in
which the generals of the Byzantine army are separated while scouting an enemy base, and
must use messengers to communicate with one another in order to decide on an appropriate
plan of attack. However, because they are separated, traitorous generals who have infilitrated
the Byzantine army may influence the decision, causing the generals to agree on a plan
different from what their commanding general intended. All honest generals must agree upon
the correct plan, regardless of the presence of malicious actors in the system. The adoption
of DLTs in computational software was held back due to a variation of this problem: rather
than referring to generals who are unable to reach agreement on a certain plan of action, the
Byzantine Generals Problem as applied to DLTs refers to a group of indepedent computers
being unable to reach agreement on the current state of some ledger.

Satoshi Nakamoto proposed a general solution to the Byzantine Generals Problems
through Bitcoin, which used a new algorithm that depended on participants solving crypto-
graphic problems in order to reach consensus on the state of a digital currency that settled on
a distributed ledger. Bitcoin’s initial success was a direct result of its unique integration of
Proof-of-Work Consensus with the “Longest Chain Rule”, which refers to the philosophy of

2 Background

assuming that the longest valid ledger is the most legitimate one. This implementation has
come to be known as Nakamoto Consensus. In Bitcoin, Nakamoto Consensus specifically
solved the Byzantine Generals Problem by incentivizing block validators, also known as
miners, to validate the longest and most accurate chain. This ensured that all participants
can have confidence in the validity of the current chain of transactions without having to
look to a centralized authority. Bitcoin also solved the double-spending problem that had
plagued previous digital currencies such as Digicash by introducing a timestamp record
for each transaction; this ensured that no singular Bitcoin was “spent” multiple times by
the same account. The idea of grouping these transactions into blocks, which were then
validated through Nakamoto Consensus and stored on a public ledger, was revolutionary,
and represented the first real use of what is now known as blockchain technology. The
consensus mechanism also protects the network against malicious actors: an attacker will
need to control over 50% of the computing power in the network in order to gain control of
the blockchain (commonly known as a 51% attack). Bitcoin’s success paved the way for
blockchain technology and DLT in general. In the years following Bitcoin’s release, multiple
blockchains and their corresponding digital assets have been released, with each new chain
focusing on a different method to improve upon Bitcoin’s original model. For example,
Ethereum proposed a blockchain with a built-in Turing Complete programming language that
allows for the creation of programmable contracts that can define transactions between two
parties, store data, and tokenize other data. On the other hand, platforms such as Algorand
and Solana have leveraged different consensus mechanisms and technical frameworks to
create blockchains that are more scalable for enterprise use.

1.2 Going beyond the tokenization of assets

Bitcoin’s rise propelled the creation of new subsets of software and even the development of
entirely unique sectors; for example, Decentralized Finance, or DeFi, rose entirely out of
Bitcoin’s successful implementation of a decentralized currency with a shared state. Most im-
portantly, the ability to make monetary transactions without a centralized authority was, and
still is, revolutionary: users can store value, make payments, and more, all without reliance on
a trusted third party. However, blockchain technology has applications beyond just financial
transactions and asset management. For example, a decentralized governance application
for voting could easily be built using smart contracts that are stored on a blockchain, with
votes being recorded directly on the public ledger. Additionally, a storage service can also
be built on the blockchain, enabling files and other forms of data to be encoded within the
public ledger and to be shared with different participants in the peer to peer network. A more

1.2 Going beyond the tokenization of assets 3

recent innovation are Non-Fungible-Tokens, or NFTs. NFTs are singular tokens representing
a proof of ownership, and have seen numerous use cases in digital art, real-estate, and content
management. Decentralized applications, or DApps, are applications that use smart contracts
and ultimately settle on a ledger instead of a centralized group of servers. DApps are tra-
ditionally built on blockchains with a virtual machine that supports quasi-Turing complete
execution, thus allowing for them to exist indefinitely. To support the growing number of
applications, blockchains must be both scalable and secure when compared to their traditional
counterparts.

Unfortunately, most alternative use cases are currently limited, at least in most current
blockchains. In Bitcoin, computation on a large scale is intentionally limited, to maintain
both decentralization and Bitcoin’s main use case as a store of value at the base layer. This
is largely due to Bitcoin’s consensus model, which is perfect for a decentralized currency
supported by a peer-to-peer network, but fails when used for higher-level applications. In
particular, Bitcoin’s utilization of POW means that individual transactions slow (on average,
a transaction takes around 10 minutes)/ This not only makes Bitcoin unsuitable for enterprise
use, but also places restrictions on the use-cases for the underlying blockchain technology.
The amount of computational power needed to process blocks of transactions also makes
Bitcoin somewhat restricted; governance and gaming applications may need to process 1000s
of transactions per minute in a cheap and efficient manner, which is something Bitcoin cannot
currently handle natively. Bitcoin also has no direct representation of state: while there is
a mapping between accounts and balances, storage of data and native instructions is left to
transactions.

1.2.1 Programming with Bitcoin Script

Development on Bitcoin is primarily done through two means: direct additions to the Bitcoin
Core software that allow for scalablity , and implementation of the current Bitcoin Protocol
with the Bitcoin Script programming language. Here, we will focus on the Bitcoin Script
programming language as it is method for creating programs that leverage the Bitcoin
blockcahin. Script is a stack-based programming language that allows for a transaction to
have direct specifications with regards to how the receiver will be able to unlock the coins
to be spent or transferred elsewhere. This is implemented through operations on Unspent
Transaction Outputs (UTXOs) that essentially govern when and how a certain portion of the
currency is made available. This allows for the creation of basic smart contracts that can be
used to create applications that offer payouts based on certain requirements being met. These
requirements can range from the completion of tasks that can be verified by the program to a
simple exchange payout which dictates that you must send x amount of another asset in order

4 Background

to receive the corresponding amount of Bitcoin. Below, a code snippet of a Bitcoin Script
program designed for a simple transaction to a public key address is defined.

Fig. 1.1 Source: Bitcoin Wiki

The opcodes OP_DUP, OP_EQUALV ERIFY , and OP_CHECKSIG define functions
for duplicating the top stack item, checking that all the inputs are equal, and checking that
the top item of the stack is valid, respectively. The Script programming language comes
with multiple opcodes that can be used to create unique contracts depending on the preferred
use-case.

While Script can support a plethora of applications that connect directly to the Bitcoin
blockchain, it lacks several key features that prevent it from being a long-term scalable solu-
tion in blockchain development. Script only focuses on UTXOs, thus limiting applications to
only transactions on the blockchain. This prevents developers from creating smart contracts
that can take into account or mutate on-chain data. While Script does allow for the creation
of programs that can define data that settles through transactions, this is more optimized for
side payment channels (such as the lightning network) rather than Script is also decidedly
complex; its syntax and structure make it difficult to implement for more difficult use cases.
For example, an average script for a MultiSig Transaction will require all users to send
custom scripts in order to have the transaction function as intended. This leads to inefficiency
when creating scripts that handle more complex operations and transactions.

1.2.2 Programming with Ethereum

The Ethereum Blockchain, described as “A Next-Generation Smart Contract and Decentral-
ized Application Platform” in its initial white-paper, was meant to be a direct improvement
over Bitcoin in terms of its scalability. Coming with a built-in Turing Complete programming
language, the Ethereum Blockchain has become the main platform for DApp Develop-
ment, with numerous developers and organizations using the platform to power their own
blockchain base solutions. Programs written in Ethereum are significantly more scalable
than their Bitcoin counterparts due to both their Turing Completeness and their capacity to
process state; loops and on-chain data are frequently used to create programs that are both
efficient and responsive.

Ethereum’s most popular programming language is Solidity, a high-level programming
language based heavily on Javascript. Solidity is Turing-Complete, and any code written in

1.2 Going beyond the tokenization of assets 5

Solidity is meant to be transitioned to lower level byte code and run on the Ethereum Virtual
Machine (EVM). A typical Solidity program is built around contracts, which are essentially
classes that define various structures within a larger program. A contract can be used to
create and define operations for a new asset, governance mechanism, or identity verification
tool. A simple smart contract designed to create a new asset, taken from Solidity’s Docs, is
shown below:

Fig. 1.2 Solidity Code

Contracts support the use of functions, events, errors, etc. This allows developers to create
complex smart contracts that respond directly to input. The contract above, for example,
defines the event Sent, which signifies the transfer of the asset from one party to another.

Despite Ethereum’s advantages, it still possesses several problems that act as a barrier to
widespread institutional adoption. Namely, the high transaction fees in Ethereum, commonly
referred to as Gas, mean that every smart contract must be carefully optimized to reduce
deployment costs. Based on current network congestion, the deployment of a simple smart
contract such as the one described above can cost upwards of 400 USD. Additionally,
Ethereum programs, while significantly more high-level than their Bitcoin counterparts, come
with their own nuances. Most notably, Ethereum code lacks a high degree of composability
and reusability, thus creating an ecosystem where the same code is often deployed over and

6 Background

over again. While libraries in Solidity have provided a temporary fix, they still remain to
be widely used. Internal functions can be called recursively; however, there are clear limits
based on both the size of the stack and the underlying memory. Ultimately, programming on
the Ethereum blockchain on an enterprise-level scale is extremely difficult for the average
programmer due to its underlying intricacies, with gas optimization and a lack of significant
modularity being the key reasons. This causes developers to make rudimentary mistakes,
leading to applications that have fatal security vulnerabilities as a result of simple errors.
These vulnerabilities result in significant financial loss every year as malicious actors take
advantage of logical loopholes within the smart contracts driving these applications.

1.2.3 Alternative Methods and Chains

Currently, alternative blockchain platforms such as Algorand, Cardano, and Polkadot seek
to make blockchain technology more scalable for both institutional adoption and DApp
development. These platforms are often an improvement on existing solutions: Algorand
and Cardano both reach on-chain consensus through a proof-of-stake implementation that
drastically reduces transaction costs, while Polkadot offers interoperability, cross-chain
transfers, and an efficient execution model based on WebAssembly (WASM). However, these
chains have their own unique problems, with centralization, a lack of scalability, and a lack
of security being several of the most commonly cited issues. Current blockchain solutions
often also focus on developing infrastructure for a specific area or use-case, with most chains
placing a large emphasis on DeFi. This leads to platforms that are well-suited to dictate asset
transfers, but less apt for other use-cases such as data storage.

Furthermore, as with Ethereum and Bitcoin, the learning curve for most alternative
chains are extremely steep. While a skilled developer should be able to execute automatic
transactions with relative ease, creating complicated smart contracts or applications that
manipulate on-chain data is much more difficult. In order to create a full-fledged DApp,
developers often have to contend with low-level languages with little documentation, ensure
that their application is secure, and find structural support for extraneous use cases. While
community-based development (the creation of multiple SDKs on Algorand is a good exam-
ple) has made blockchain development more accessible, they are still not integrated into the
blockchain’s core smart contract architecture. Although current blockchain solutions succeed
in facilitating decentralized currencies, they remain difficult to use for standard application
development. This significantly limits the adoption of blockchain beyond finance, as most
developers will prefer the more efficient and easier legacy solutions. Furthermore, a majority
of alternative chains are often dependent on EVM compatibility to generate meaningful adop-
tion, and often settle for Solidity as their go-to high-level language, resulting in an ecosystem

1.2 Going beyond the tokenization of assets 7

with little to no viable alternatives for developing smart contracts. EVM-dependency also
makes blockchain development somewhat isolated; the EVM is fundamentally different from
other popular virtual machines, making it difficult for both developers to learn its intrcracies
and for enterprises to port legacy applications. While Polkadot (and Cosmos) allow for the
usage of WASM, its mainly restricted for developing application-based side chains, rather
than native contracts.

Chapter 2

Adamnite

Adamnite is meant to represent the future of blockchain development, allowing both pro-
fessional developers and hobbyists to leverage blockchain technology without having to go
through an arduous learning process or sacrificing a large amount of computational resources.
Furthermore, a significant focus will be put on enterprise level use: the Adamnite blockchain
should be faster, safer, more powerful, and cheaper to implement than existing blockchain
solutions. Adamnite accomplishes this by introducing a blockchain development platform
that is user/developer oriented while simultaneously optimized for large-scale application
development. By providing a system that is more intuitive and easier to understand, Adamnite
hopes to create a platform that encourages more developers and organizations to embrace
blockchain development.

Adamnite focuses on three main goals:

Ease of Use: Adamnite’s key appeal is its simplicity: its programming language and associated
environment should be as easy to learn as Python, Javascript, etc. Abstraction and
modularity will be key; the Adamnite blockchain should emphasize ease of develop-
ment even if it comes at the cost of increased storage or bloat on-chain (however, we
do predict that the marginal decrease in storage due to comosable contracts will offset
any immediate storage cost). An example will be the use of libraries: developers using
Adamnite should have the ability to download community-vetted libraries that will aid
them when creating simple programs.

Security: Organizations and businesses should easily be able to implement Adamnite into
their current framework without worrying about security or failure. This applies
to both smart contract security, and settlement security: smart contracts developed
on Adamnite should have guards that prevent unexpected behavior or exploits, and
the blockchain should not halt due to coordinated economic or network attaks. The

10 Adamnite

Adamnite Blockchain should also remain accessible: anyone running a node should
be eligible to validate different aspects of the blockchain or be selected in the leader
election process to propose/validate new blocks.

Scalability: Apps built on Adamnite’s blockchain utilizing multi-party smart contracts should be
able to support numerous users and a generally high message throughput. A state-
execution model, based on the popular WASM paradigm used by Polkadot and Cosmos,
among others, should allow for both efficiency and potential interoperability with other
development platforms. This execution model should be efficient while retaining both
decentralization and storage efficiency.

2.1 Adamnite Transactions

Adamnite, like other distributed ledger technologies, uses a native digital asset to act as
both an economic incentive for computers who are performing upkeep for the network and
as a guard fee to prevent unmitigated use of the underlying network. Like Ethereum and
other 2nd/3rd generation blockchain networks, Adamnite utilizes an account-based model,
meaning that transactions and state-transitions are tracked in individual accounts instead of
unspent transaction outputs as with Bitcoin. Adamnite has two account types: autonomous
(controlled by on-chain code), and manual (controlled by an external party). All accounts
have the ability to send and receive transactions, and contain the same standard fields:

1. Nonce: the amount of transactions the account has sent.

2. Balance: the total amount of NITE that the account owns

3. Code Hash: A hash of the code that controls the account. This field is empty if the
account is manual.

4. Storage Hash: A hash that represents the state, or storage, for the account. This field is
empty if the account is manual.

Adamnite’s native currency is stylized as Nite, and is used to transfer value within the
network. Transactions on the Adamnite network contain the same standard fields as any
cryptocurrency platform:

1. The type of transaction

2. Sender’s Public Adamnite Address

2.2 Consensus Mechanism 11

3. Amount of NITE being sent

4. Public Address of the recipient

5. Message, an optional field where additional data can be stored.

6. Message_Size, an arbitrary integer describing how large the message is in bytes.

7. ATE_Max, the maximum transaction fee of the transaction

8. Sender’s signature

The type of transaction simply refers to whether the transaction is a payment transaction
(transfer of NITE from one manual account to another) or an application call (from a manual
account to a predefined autonomous account).

The net fee ATE_MAX is determined similarly to Ethereum’s net gas price: each transac-
tion, whether made by an external account or smart contract, is analyzed to determine the
total amount of processing power or storage imposed on the blockchain. Like Ethereum’s
model, this is to prevent malicious players from taking advantage of the network by sending
repetitive transactions that consume a lot of computing power. However, due to Adamnite’s
consensus model, net transaction fees are a lot lower than legacy chains, drastically increasing
scalability and performance for on-chain applications.

2.2 Consensus Mechanism

Adamnite’s blockchain and consensus protocol leverages a variation of Delegated Proof of
Stake (DPOS). DPOS is a consensus mechanism in which participants vote on a group of
validators, or witnesses, to represent them in the network. These validators are then given
the ability to both create and approve new blocks. Rewards occur twice: validators who
successfully propose a new block of transactions are rewarded for the work they expend
on creating a new block and validating it, while active participants who regularly stake
their tokens for the purpose of voting are rewarded an amount proportional to what they
are staking. An important note is that in order to participate, a node simply needs to send
a specific participation transaction (with no actual assets). This participation transaction
will essentially communicate the individual node’s preferences for the witnesses (a node is
allowed to select more than one witness) for the next l blocks, where l is an arbitrary number.

12 Adamnite

2.2.1 Block Proposal and Agreement

A semi-formal definition of Adamnite’s consensus mechanism follows. At the beginning of
each round (a round consists of l blocks), all nodes have the opportunity to communicate
their preferences for the witnesses. The witnesses who receive the most votes are then sorted
into a witness pool of size m (pool A) which will remain consistent until the beginning of the
I +1 round. Every kth block (k being an arbitrary factor of I), a set of n/m witnesses (with n
being an arbitrary factor of m) are chosen randomly to act as validators for the next k blocks,
weighed by factors such as the total number of votes they received (each NITE is one vote),
their history/reputation as a witness, and their individual stake within the protocol. We define
this new pool as pool B. Finally, for each block, a block proposer is selected randomly from
pool B. Once a block is proposed, it must be confirmed by at least 2/3 of pool B in order to
be validated and added to the blockchain. This process repeats indefinitely, with pools A and
B changing based on the witnesses that are elected by the network. If a witness is found to
misbehave by, for example, encoding invalid transactions within their chosen block or trying
to propose blocks on two different forks, then they are replaced by another witness from pool
A. They also suffer a punitive loss to their reputation: their reputation score is cut by a fixed
amount. This also results in the nodes who voted for them ultimately losing their rewards,
and thus rendering them less likely to vote for that particular witness in the future.

Ultimately, Adamnite’s consensus mechanism seeks to minimize block latency (the
time it takes for one block of data to be agreed upon and uploaded to the network) while
also maintaining a degree of security and decentralization. DPOS, by limiting both block
production and validation to a small subset of democratically elected witnesses, allows for
both mass scalability while allowing for widespread participation among the network. In that
sense, Adamnite’s consensus mechanism can be thought of as a democracy implemented on
a public ledger, with the candidates being potential witnesses and voters being participants.

The Adamnite Blockchain also plans to use governance, similar to that of a Decentralized
Autonomous Organization (DAO), to make protocol and structural changes to the blockchain.
This is similar to the governance mechanism created by Algorand, where users vote on
various proposals and have the opportunity to earn rewards in exchange. In Adamnite,
governance will be used to select both delegators (individuals who oversee the governance
of the network) and vote on legitimate proposals coming from the delegators. This can be
used to both vote on both protocol-level decisions, such as the amount of rewards to give
witnesses and their stakeholders, and development decisions such as the initial screening for
improvement proposals.

2.2 Consensus Mechanism 13

2.2.2 Witness/Validator Selection

Adamnite’s consensus mechanism maintains several key differences from traditional staking
protocols. Adamnite blocks contain a list of all the individual storage messages for each
transaction and the net storage size in bytes. Furthermore, a validation list (a copy of the
public addresses of both the block proposer and validators, along with a cryptographic proof
that they all were indeed in the set of validators chosen for that particular block) and the
block number are also recorded. In order to validate a block, a witness W needs to first ensure
that the previous block is valid, ensure that the current block has a reasonable timestamp
tn(tn−1 < tn < tn−1+10, where t is recorded in minutes), ensure that each transaction is
successful based on transaction parameters, ensure that the block number is valid, and finally
ensure that the block proposer is a part of the pool of selected witnesses (previously defined
as pool B). While there may be concerns over a malicious party specifically targeting the
witnesses for a specific block based on both the public record of chosen witnesses and the
inclusion of the validator list in each individual block, Adamnite’s unique DPOS scheme
should prevent this. Specifically, a cryptographic sortition scheme, similar to ones employed
by Algorand and Witnet, is leveraged to select the individual from the top n addresses as
determined by vote, where n is inherently dependent on the total number of participants
in the ecosystem. This process is repeated every round. Specificially, the cryptographic
sortition, by leveraging a verifiable random function (VRF) ensures that certain validators
are not picked out and attacked, a problem that has plagued other blockchains.

h(sig(t,rand(i),M))< K

In the above equation, h represents a Verifiable Random Function (VRF), the signature
function takes in time, a random value, and the key M, and K represents the total number of
votes the particular address received during the previous “election”. This equation can be
altered to take on additional weights: for example, for Adamnite’s specific implementation
will takes into account the stake of the account, and its reputation, as measured by its past
behavior when selected as a witness. For each block, the probability that an address within
n will be chosen to validate it is inherently dependent on the amount of votes that were
allocated to it. The cryptographic sortition scheme should ensure that the identity of a block
proposer, or even the group of witnesses acting to validate various blocks within the chain, is
reasonably protected.

Chapter 3

Programming on Adamnite

All transactions and autonomous contracts on Adamnite are executed by the Adamnite Virtual
Machine (ADVM), which executes native byte code, defined as ADVM code. ADVM is a
computational engine that is shared among all Adamnite nodes, and allows for programs
written in a high-level source language to be executed on the blockchain. ADM code is
Turing-Complete: it is meant to allow developers to have as much flexibility as possible when
creating applications. Code written by developers in a high-level language is compiled to
opcodes, which are then run on the ADVM. These opcodes can define simple transactions and
payouts, or take into account external data to manipulate the overall state of the network. To
achieve Adamnite’s goal of both safety and modularity, the ADVM (and by extension, ADVM
code) are implementations of the popular Web Assembly (WASM) paradigm. WASM is a
general format for executing binary instructions in different environments. Its most popular
use-case is for serving as a common standard for internet-based web applications. WASM
was chosen for Adamnite because of its standardization and modularity: developers are
more likely to be family with executing operations within WASM’s framework (for example,
standard arithmetic uses either 32 or 64 bits, rather than 256 bits as with the Ethereum Virtual
Machine), and can create specific WASM binary modules as needed to supplement the core
implementation. WASM’s standardization also helps with on-chain code readability, thus
allowing users to validate the low level byte code that is actually deployed on-chain.

3.1 A1 Programming Language

The ADVM will be the primary target of the A1 Programming Language, a high-level
pythonic programming language designed for writing contracts and on-chain applications.
A1’s main advantage over other popular alternative smart contract programming languages
comes from its ease of use, modularity, and assertion-based security: developers should be

16 Programming on Adamnite

able to easily learn the basic syntax/semantics of the language, use vetted and predefined
libraries to create complex programs, and declare various properties for checking during
compilation. While modularity and ease of use enable developers to quickly create complex
applications, property-based testing ensure that the individual contracts and programs that
comprise these applications are secure. A1 is greatly inspired by the E programming language,
a general-purpose programming language created specifically for distributed computing
created by Mark Miller, Dan Bornstein, and others in 1997. E was also one of the first
programming languages to introduce the concept of smart contracts by allowing developers
to define programs that could execute agreements between multiple parties by supporting
distributed computing.A1 extends the fundamental principles of E to create a programming
language capable of defining high-level instructions that ultimately execute on a blockchain.
A1 also fits in naturally with the ADVM due to its modular nature, which corresponds to
WASM modules.

3.1.1 Modularity and Scripting

The development of the A1 ecosystem, and Adamnite as a whole, will be an iterative process;
as more applications, libraries, and packages are built for the A1 Programming Language,
the easier it will be for new developers to get started. A1’s similarity to Python and other
mainstream programming languages also means that more and more Adamnite’s open-source
nature also means that its standard library will become completely community-run over time,
leading to a self-sustaining ecosystem that does not depend on a centralized authority or
party for continued maintenance. Over time, developers may elect to use different versions
of A1, leverage specific packages, or spin up different distributions for specific needs. In that
sense, Adamnite’s community will evolve to be that of not unlike Python or C++; its goal is
to enable a shared community of developers to create functional programs such as the one
below:

Fig. 3.1 A1 Ballot Example

3.2 Storage and Execution 17

3.1.2 Verification for Security

On-going safety for smart contracts is where a specific part of Adamnite’s proposed ecosystem
comes into play: every one of Adamnite’s programming languages will have a compiler
with a verification engine that checks for logical invalidity and specific assertions defined
by the developer. One of the primary goals for integrating this with the A1 programming
is to integrate a verification engine within the compiler, thus allowing for checks on logical
invalidity and assertions before compilation to WASM. An example follows. A developer
wants to ensure that a smart contract will not allow a participant Alice to arbitrarily withdraw
funds through a loop. They will simply need to declare this through an assertion in a separate
script used specifically for compilation. This assertion can simply be a check of a single
variable, or something more complex such as checking the interim value of a function’s
output. Whatever the case, the compiler will be able to check the assertion against the body
of code for which it is defined and see if it holds. The compiler will also check for loop
invariants, which are essentially conditions that are true at the start of every ith iteration of a
loop. The compiler’s security will be mostly centered around property-based testing, thus
allowing for developers to check individual parts of their code to ensure that it functions
as intended before deployment. These properties can be as simple as a binary statement
comparing two variables to a complex knowledge assertion determining the information
known to a party interacting with the contract. This is similar to the verification engine
provided by Reach, a blockchain development platform that allows developers to write smart
contracts for multiple platforms at once. However, for A1, the proposed verification engine
will be built into the compilers itself, thus not requiring developers to learn a non-native
language that they may be unfamiliar with. Furthermore, the compiler also supports the use
of direct tests; developers should be able to write exploit scripts to test their own programs.
Much like how QuickCheck enabled programs written in Haskell to be a lot more secure,
A1’s verification software will enable developers to easily write secure smart contracts on
the Adamnite network. Making verification a key part of every program will allow for a
streamlined and secure development process that will hopefully help create DApps that are
less prone to exploits.

3.2 Storage and Execution

Adamnite utilizes a unique storage mechanism, as described earlier, to store information
for autonomous accounts. While the core blockchain utilizes a binary merkle trie scheme
(essentially the same as that described by Buterin and Ballet in EIP-3102 for storing account
and state information), an off-chain database stores both the actual code and data for au-

18 Programming on Adamnite

tonomous accounts. A hash (presumably computed using a secure one-way hash function) is
then stored on the actual blockchain. This scheme helps Adamnite in two ways: it increases
the efficiency of on-chain code execution (state changes due to interactions with code are
uploaded in batches to the actual blockchain) and helps Adamnite to be more stateless by
decreasing the size of the ledger that must be stored by clients and nodes, thus reducing the
barrier for individuals to download a copy of the chain and thereby independently verifying
the current state of the blockchain. A similar two-tier architecture has been proposed in
Algorand, and implemented in Polkadot.

3.2.1 Structure

The binary merkle trie used to store the actual distributed ledger is a mapping between
key values and their hashes, and mostly follows the standard structure. The off-chain
database used to store contract code follows a more traditional key structure, mapping
account addresses, files containing code, and storage. This works seamlessly with the WASM
structure for the ADVM, as code and associated meta data can be easily uploaded to the
database without the need for a complex deployment process. We assume that the off chain
database can easily access state information of the actual blockchain, and the existence of
clients/nodes to validate the contents of the database between various code executions and
transactions. We also assume the existence of different types of clients designed to store
the database itself and verify its contents. The binary trie itself stores account balances,
the nonce, and for autonomous accounts, the hash of the code and storage. This is in stark
contrast to the structure used by Ethereum and other EVM spinoffs, which often use multiple
trie structures to store account information, leading to increased requirements for actually
running nodes to verify the blockchain.

3.2.2 Contract Creation and Calls

The execution of on-chain code, or message calls, are handled through the off-chain database.
We define a separate set of validators, elected through the same DPOS election used to select
witnesses for the core blockchain. These validators not only validate any changes made
to the database itself, but also execute calls made to autonomous accounts by executing
the underlying code, and handle the creation of autonomous accounts. Unlike the core
blockchain, the execution of code is optimized for speed rather than security or liveliness.
A single leader is chosen among the group of validators to execute all code executions
for the round. This leader produces a batch of state transitions within a certain period of
time (equivalent to the execution of 10 blocks, for example) and optimizes for throughput.

3.2 Storage and Execution 19

Consensus on changes to storage and balances on the actual blockchain as a result of code
execution is handled using a Proof of History (POH) scheme that is similar to Solana’s
implementation. The leader executes both the uploading of new code and calls to already
existing code, proposes a set of transactions/changes to both the database and on-chain
state, produces a cryptographic proof for each change attesting that time has passed, and
communicates the set to the rest of the validators, who then check it. Because of the usage
of POH, validators can check individual changes in the larger set, thus allowing the entire
committee to reach consensus on a set of state changes much faster. Once a majority (2/3)
of validators have approved the changes, they are submitted as an all or nothing batch to
the current set of witnesses for the core blockchain, who then check it independently before
updating the state. It is worth noting that the witnesses for the core blockchain will simply
need to validate state-related checks (if any regular transactions have resulted in the one
of the message executions being rendered invalid). We provide an example describing the
liveness of a native on-chain application, from its creation to use by an user.

1. Developer writes application logic in the form of an A1 smart contract, and compiles it
to ADM code (a WASM file, along with associated metadata).

2. Developer uploads ADM code to the off-chain database, thus creating a new au-
tonomous account.

3. Off-chain validator certifies the creation of a new autonomous account, creates a new
account in the database with a storage key based on the metadata and a code key based
on the code. The autonomous account is created on the core blockchain after approval.

4. A user interacts with the autonomous account, thus submitting a transaction or message
call.

5. The off-chain validators certify that the user is able to complete the execution by
cross referencing with both the user’s on-chain balance and the storage contents of the
autonomous account in the database.

6. The off-chain validators create a state check that includes the user’s required balance
for the witnesses of the core blockchain, and submit it as part of an all or nothing batch.

Ultimately, code execution in Adamnite is optimized for speed and efficiency, while base-
level payments and consensus is optimized for liveliness and security. This allows for the
creation of an ecosystem in which both high-throughput applications such as games and
streaming applications can exist, without compromising the safety of base-level transactions
that make up the integrity of the underlying system.

20 Programming on Adamnite

3.3 Potential Use Cases

We now turn to a discussion of potential use-cases for the Adamnite platform, centered
around its efficiency and ease of use.

3.3.1 Asset Creation

Assets built on top of existing blockchains have grown rapidly in popularity, and now make
up a significant portion of the cryptocurrency market. These assets can represent equity stake
in a physical company, have some form of unique utility, or be used for governance in a DAO.
Sub-Tokens, as they are often called, often serve to support or tokenize a different use case.
On Adamnite, a new asset can easily be built directly onto the blockchain. The creation of
an Adamnite-Sub-Token simply involves encoding standard token parameters such as the
name, amount, and the address of the creator. Due to A1’s modular structure, a developer
can simply import a predefined token module and encode . An example of what Adamnite
hopes to achieve with asset creation is given below in A1:

Fig. 3.2 A1 Token

3.3.2 Decentralized Finance

Adamnite’s accounts could easily be leveraged to create smart contracts that allow for
autonomous transactions to be processed directly on-chain. These smart contracts can be
used to create DeFi applications that only send transactions based on certain requirements
being met. For example, this could be used to create an exchange, where the transfer of an
on-chain asset to an autonomous account results in that account paying out the equivalent

3.3 Potential Use Cases 21

value in a separate asset. Due to Adamnite’s storage capabilities, a wide variety of data can
be used for analysis in smart contracts, thus allowing for the creation of more diverse DeFi
Applications. An example will be a banking application that lends assets as collateral, and
establishes a credit history for a particular account based on its past transactions.

3.3.3 Decentralized Streaming

Decentralized Streaming has a variety of applications, from setting up communication hubs
directly on the blockchain to enabling peer to peer communication without dependence on
a centralized party. There have been implementations of decentralized streaming, such as
LivePeer, that have seen success in recent years. On Adamnite, decentralized streaming
applications can be easily built due to the modularity of Adamnite’s underlying programming
language. Developers will be able to leverage precompiled contracts to handle data storage
and encoding Furthermlore, Adamnite’s speed will also help these applications; streaming
DApps that leverage Adamnite should have the same efficiency as their Web2 counterparts.
Developers can also create a system in which data miners (not to be confused with on-chain
validators) are rewarded for transcoding videos and “renting storage” for the purpose.

3.3.4 DAOs

A DAO, in its most simplest form, is a group of people who come together to make decisions
regarding the rules or structure of an organization. Decisions are often made through votes
through a standard governance process, with a computer program automatically making
changes based on the outcome. Rules and decisions could extend beyond code; many
DAOs make decisions on the allocation of internal capital, investments, and more. The
key to implementing a basic DAO structure is to have mutable code that depends on the
consensus reached by the members of an organization, and a basic governance model
for determining said consensus. Governance models have also gained popularity in the
blockchain community, with decentralized organizations and some blockchain networks
using governance to enable the wider community to reach consensus on a particular proposal.
A simple DAO or governance model can be implemented on Adamnite as follows:

1. Create separate blocks of code that only activate based on certain logical parameters.
For example, there could be a block of code that is meant to transfer X amount of an
asset from one account to another, and only executes when a satisfactory number of
voters choose to approve the transaction.

22 Programming on Adamnite

2. Create smart contracts that define a new proposal and allow constituents to vote on
whether or not it should be implemented. The actual creation of the smart contract
is flexible, and can be done in multiple ways. A simple method is to simply create
autonomous Adamnite Addresses representing each decision, and have these addresses
register votes either through the transfer of an asset or the manipulation of some other
on-chain data.

3. Implement the correct block of code based on the decision reached by the constituents.

Adamnite can also be used for governance methods by any community, thus allowing any
group of people to make decisions directly on the blockchain.

Chapter 4

Conclusion

We now turn to a discussion of arbitrary research goals that Adamnite hopes to solve, either
pre or post launch. These goals, for now, are centered around accessibility and privacy.

4.1 Looking Ahead

Making Adamnite more stateless or enabling clients/nodes intended for verifying Adamnite
to act in a stateless manner, is a key future goal. Due to Adamnite’s use of a binary merkle trie,
the computational requirements for a node to validate the canoncial history of transactions
is already lower than most of its counterparts. However, as more and more applications
and users utilize the network, these requirements will increase over time. While alternative
solutions such as moving to verkle tries (trie structures that use vector commitments rather
than hashing) reduce the requirements for maintaining light clients/simple verification nodes,
they don’t reduce the size of the actual state. We plan to leverage the usage of zero knowledge
proofs (ZKPs) to create a succinct blockchain that allows a validator to validate the latest
block in order to validate the entire history of the blockchain. This will further reduce
the barriers required for individuals to independently validate the network. It will also
greatly decrease the overall size of the blockchain, thus making it more efficient from a
computational perspective. A similar solution utilizing ZKPs has been implemented in the
MINA blockchain, whose entire size is reported to be only 22kb. A more immediate way
to reduce state is to have an expiration date for transactions submitted to the network, and
to prune empty accounts with no balance or storage. A similar solution has been proposed
by the authors of Vault, who theorized that introducing an expiration date for transactions
and getting rid of unused accounts could greatly increase efficiency in a cryptocurrency
network. Reducing the size of on-chain state also ultimately helps both developers and users
to be censorship resistant: by verifying and connecting to the blockchain independently,

24 Conclusion

participants in the network are less reliant on large-scale node operators who may act in their
own self-interest.

Future security, especially for on-chain smart contracts, is another key research objective.
While formal verification in the form of assertions helps prevent rudimentary errors, more
complex attacks, especially those that are carried out by attackers who create an attack
contract for the sole purpose of exploiting distributed logic within an external decentralized
application. Within A1, we plan on solving this through the usage of distributed promises,
a component of distributed computing originally found in the E Programming Language.
An example of a promise is a "when do" statement, which is essentially a logical check that
some action or transfer was completed before executing more logic. This can help prevent
smart contract errors that arise from an exploit in logic rather than incorrect code. A prime
example of this type of attack is reentrancy, a type of exploit where an attacker constantly
calls a withdraw function on some type of staking contract, resulting in inaccurate payouts
that allows the attacker to withdraw the funds locked in the contract over time. In recent
years, more complex attacks with multiple participants have come into play, with more and
more funds being lost due to smart contract exploits every year. Establishing a programming
standard that prioritizes safety through the use of promises will greatly help in reducing these
exploits.

4.2 Miscellaneous

The following is a discussion on several extraneous topics or questions that are separate
from the core tenets of the network. Some subsections such as a defense of the underlying
consensus protocol, are meant to answer potential questions, while others, such as the
discussion on underlying economics, are meant to be a primer for non-technical decisions
that nevertheless impact the protocol. For a more in-depth technical clarification on particular
topics (such as the data storage mechnaism), more recent literature (such as the technical
paper) should be consulted.

4.2.1 Why DPOS?

DPOS as a consensus mechanism is perceived to have two common flaws: security and
centralization. These issues are hand-in-hand; critics of DPOS point that there must be active
engagement in the voting process in order to prevent the same accounts from being selected
repeatedly as witnesses, which therefore leads to centralization and security concerns, as a
malicious attacker will be able to pinpoint the witnesses. Adamnite solves this problem in

4.2 Miscellaneous 25

two ways. First, by introducing incentives for voting, Adamnite ensures that participants
will be more likely to participate in the voting process. Second, by leveraging cryptographic
sorition, Adamnite ensures that the pool of witnesses for a particular block is semi-random,
with the initial pool of the highest vote earners being the only public information.

DPOS was specifically chosen as a consensus mechanism because of its speed, security,
and reliability. DPOS has been shown to be faster and more efficient than both POW and
POS, primarily because it utilizes a small number of witnesses to validate new blocks,
rather than requiring a proof of computational power or consensus among a large number of
addresses. Furthermore, DPOS is decentralized, as every token holder has the opportunity
to participate in voting. Finally, witnesses have a large incentive to act honestly, as they
could lose both their position (and their potential for earning validation rewards) at any time.
Ultimately, Adamnite’s DPOS consensus mechanism will help make it more scalable: by
concentrating both block proposal and block validation in the hands of a few democratically
elected validators, Adamnite will be faster than other chains while retaining a certain aspect
of decentralization.

4.2.2 Governance

Adamnite plans to use governance as a way for participants to both vote on delegates and on
proposals. Initially, governance in Adamnite will follow a traditional coin-vesting scheme,
similar to the governance mechanisms utilized by Cardano and Algorand. Participants will
be asked to lock a certain amount of NITE in order to vote on a proposal or on delegates.
They will then be able to vote for a certain option. The option with the highest amount of
NITE dedicated to it will be the one that is implemented. In the case of delegates, the top
m addresses will be chosen, with m again depending on the total number of participants.
This is ultimately a coin-voting mechanism, as an individual participant will be able to lock
a larger amount of NITE to have a larger say. Although coin-voting does cause a certain
degree of centralization, it is currently the most thought-out and widely implemented solution.
In the future, Adamnite will likely transition to a different governance mechanism such as
proof-of-participation in order to ensure both decentralization and security.

Governance proposals could range from a simple adjustment in the rewards structure to
funding for on-chain development. Delegates will ultimately be in charge of approving and
selecting new proposals, although anyone may create a new proposal for review. Proposals
will be approved in a similar fashion to Bitcoin Improvement Proposals (BIPs), with the
delegates actively engaging with both the individual who created the proposal and the wider
community. The creator will then have the opportunity to revise their proposal before it

26 Conclusion

is reviewed for approval. This creates an open process, which helps make the Adamnite
network more decentralized.

4.2.3 Proof of History

The Proof of History (POH) protocol used to quickly reach consensus on changes to the state
of the off-chain database is based on the repeated computation of a secure, one-way, and
collision-resistant hash function. In this case, the leader chosen to execute code is analogous
to the POH-generator in Solana’s protocol. Following the execution of each state-transition
that results in either a change in balance or storage for an account, the leader creates a hash of
the data and signs with his private key. The usage of a cryptographic hash function allows for
the other validators to prove that a certain amount of time has passed between two changes
to the state; because we utilize a hash function, the change can be verified in a much shorter
time than the time it takes to generate it. Hashes are ultimately appended to one another; this
ensures state stability, as the validity of a future execution is ultimately dependent on the
state that was derived from a previous execution. The proposed efficiency of this scheme
is ultimately dependent on the limitation of execution to one efficient leader, with the other
validators serving as a stamp of approval. The table below describes the execution of code
and message calls, along with the generation of the corresponding POH for each change.

Fig. 4.1 POH Table

The other validators can prove that a certain amount of time has passed between the
computation resulting in the different states due to the amount of time it takes to compute
each hash. The utilization of the previous hash creates a system in which changing the result
of an execution will require changing the results of the computations before it, creating a
cryptographic guarantee similar to that seen in mainstream Proof of Work chains.

4.3 Conclusion 27

4.2.4 Currency

The Adamnite blockchain will have its own built-in token, called nite. This will be used to
process on-chain transaction fees, voting rewards, etc. There will also be smaller denomina-
tions of nite, analogous to cents in the USD Currency System and Satoshis in Bitcoin. As
in Ethereum’s initial white paper, these denominations are named after some of the most
prominent contributors in cryptography and blockchain. They are defined as follows:

1: micali

1010: sunny

1012: vitalik

1014: nite

Nite will have a permanently growing supply, with a mathematical function controlling
the growth rate. The main argument for having a consistent growth rate, as opposed to
fixed supply such as Bitcoin, is simply decentralization. Assets with fixed supplies are often
concentrated in the hands of early adopters, thus preventing new individuals from being able
to participate in the ecosystem. A growing supply ensures that the network is always ready
to support new users. Token issuance will come from an account controlled by a delegated
party, which could be a group of chosen delegates or an official organization with the sole
purpose of growing the Adamnite network.

The growth function is also meant to control inflation. Currently, the proposed inflation
rate is 10% at the minting of the genesis block, followed by a reduction to a long term
inflation rate of 3%. These parameters, along with the annual reduction, can be altered
by the broader community in governance proposals. Furthermore, the inflation rate is a
maximum rather than an average or goal: the growth function does not account for tokens
lost to burning, misplaced private keys, etc. Like the issuance models proposed by Etherem
and Solana for their respective blockchains, the growth rate eventually reaches a constant
that ensures that the network reaches a balance between providing economic incentivies to
block producers/validators and preserving value.

4.3 Conclusion

Adamnite represents the future of blockchain development. By providing developers with the
means to create fast, efficient, and secure applications, Adamnite sets the stage for a world in
which blockchain technology is more widely used and preferred to legacy Web2 solutions.

28 Conclusion

Adamnite also serves to push peer to peer computing forward; Adamnite’s storage capabilities
and consensus system mean that individual nodes/witnesses are essentially rewarded for
hosting on-chain data encoded by other developers using the platform. However, the most
unique feature of Adamnite will be its development ecosystem. Developers, regardless of
their prior experience with DLT or blockchain technologies, will be able to confidently build
applications on Adamnite due to its intuitiveness and security. This will significantly reduce
the barriers needed to start leveraging blockchain technology in day to day development.

The idea of a next-generation blockchain platform is not entirely new: protocols such as
Ethereum have already made a significant contribution to blockchain adoption and innovation.
Adamnite aspires to accelerate this trend by providing a platform that is at once more efficient,
safer and easier to use than current solutions. Adamnite will be at the forefront of a world in
which blockchain technology is used to its full potential, allowing anyone, anywhere to build
powerful applications with the power of decentralization and distributed computing.

	Table of contents
	List of figures
	1 Background
	1.1 History
	1.2 Going beyond the tokenization of assets
	1.2.1 Programming with Bitcoin Script
	1.2.2 Programming with Ethereum
	1.2.3 Alternative Methods and Chains

	2 Adamnite
	2.1 Adamnite Transactions
	2.2 Consensus Mechanism
	2.2.1 Block Proposal and Agreement
	2.2.2 Witness/Validator Selection

	3 Programming on Adamnite
	3.1 A1 Programming Language
	3.1.1 Modularity and Scripting
	3.1.2 Verification for Security

	3.2 Storage and Execution
	3.2.1 Structure
	3.2.2 Contract Creation and Calls

	3.3 Potential Use Cases
	3.3.1 Asset Creation
	3.3.2 Decentralized Finance
	3.3.3 Decentralized Streaming
	3.3.4 DAOs

	4 Conclusion
	4.1 Looking Ahead
	4.2 Miscellaneous
	4.2.1 Why DPOS?
	4.2.2 Governance
	4.2.3 Proof of History
	4.2.4 Currency

	4.3 Conclusion

